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Cosmological Inflation and Large-Scale Structure

This textbook provides graduate students with a thorough and up-to-date
introduction to the inflationary cosmology. Enormous progress has been
made in this area in the past few years and this book is the first to provide
a modern and unified overview. It covers all aspects of inflationary
cosmology — from the origin of density perturbations during the
inflationary epoch of the very early Universe, through the evolution of the
perturbations, up to the present for a range of possible cosmologies — and
carefully compares predictions with the latest observations, including
those of the cosmic microwave background, the clustering and velocities
of galaxies, and the epoch of structure formation. To help the student to
develop a thorough understanding, problems are provided at the end of
each chapter, and numerical answers and hints are included at the end of
the book.

With the host of international experiments being performed and
planned for the near future (including NASA’s Microwave Anisotropy
Probe satellite and ESA’s Planck mission), inflationary cosmology
promises to be one of the most exciting and fruitful topics of research in
science in the next decade. This book provides graduate students with the
ideal introduction.

Andrew Liddle is professor of astrophysics at the University of Sussex,
and has also worked as a lecturer at Imperial College, London. He
received his Ph.D. from the University of Glasgow in 1989 and has
published more than seventy-five papers in refereed journals, mostly on
the topics covered in this book. He travels widely in support of his
research, with collaborators in Europe, the United States, Canada, Japan,
and Australia.

David Lyth is a senior lecturer at the University of Lancaster. His
research career began in 1962 on what was then the very young subject of
particle theory. He is author of around 100 published papers and reviews.
He has played a leading role in several areas of particle cosmology,
especially inflation. Dr. Lyth has been a visiting fellow at the Isaac
Newton Institute at Cambridge University and a regular visitor to the
University of California at Berkeley.
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Preface

The 1990s have seen substantial consolidation of theoretical cosmology, coupled with dramatic
observational advances, including the emergence of an entirely new field of observational
astronomy — the study of irregularities in the cosmic microwave background radiation. A key
idea of modern cosmology is cosmological inflation, which is a possible theory for the origin of
all structures in the Universe, including ourselves! The time is ripe for a new book describing
this field of research.

This book is based loosely on our 1993 Physics Reports article. We have widened the range
of discussion and have made much of the material more pedagogical. We believe that this book
will prove useful to starting graduate students in cosmology, to active researchers specializing
in the field, and to all levels in between.

Our view of the inflationary cosmology and its consequences has been influenced by many
people over the years. ARL especially thanks Alfredo Henriques and Gordon Moorhouse for
showing the way into this research area. DHL would like particularly to acknowledge a long-
term collaboration with Ewan Stewart. Much thanks is due to all our collaborators on the topics
within this book, namely Mark Abney, Domingos Barbosa, Tiago Barreiro, John Barrow, Marco
Bruni, Ted Bunn, Ed Copeland, Laura Covi, George Ellis, Mary Gaillard, Juan Garcia-Bellido,
Anne Green, Louise Griffiths, Ian Grivell, Rocky Kolb, Andrew Laycock, Jim Lidsey, Andrei
Linde, Anupam Mazumdar, Milan Miji¢, Manash Mukherjee, Hitoshi Murayama, Paul Parsons,
Antonio Riotto, Dave Roberts, Leszek Roszkowski, Bob Schaefer, Franz Schunck, Douglas
Scott, Qaisar Shafi, Ewan Stewart, Will Sutherland, Michael Turner, Pedro Viana, David Wands,
Martin White, and Andrzej Woszczyna. Apart from our collaborators, we have had useful
conversations with many others, far too many to mention. We hope they know who they
are!

We are extremely grateful to Andrei Linde, Martin White, and especially Gordon Moorhouse
for their careful reading of the manuscript. The figures for Chapter 12 were made by Pedro
Viana, and the compilation of cosmic microwave background anisotropy data shown in Fig-
ures 5.9 and 9.2 was kindly provided by Martin White. Many figures were made using the
superb publically available cMBFAST code (Seljak and Zaldarriaga 1996), which we strongly
recommend everyone to get.

Although we wrote most of the book at our home institutes, occasionally we were some-
where more glamorous. ARL would like to thank the Universita di Padova, the University of
New South Wales, and the Aspen Center for Physics, and DHL the University of California
at Berkeley. ARL acknowledges the generous support of the Royal Society throughout this
endeavour.



Preface xiii

Of course, we have done our best to ensure that the contents of this book are accurate;
however, some errors may have slipped through. We would be very grateful if readers would
inform us of any they spot. We plan to keep an up-to-date record of any errors, accessible at
the book’s World Wide Web Home Page at

http://star-www.cpes.sussex.ac.uk/~andrewl/infbook.html
which can be used to check for errors we already know about.

Andrew R. Liddle and David H. Lyth
October 1998






1 Introduction

1.1 This book

The study of the early Universe came into its own as a research field during the 1980s. Though
there had been occasional forays during the seventies and even before that, it was during the
1980s that a wide range of topics, united by the adoption of modern particle physics ideas
in a cosmological context, were investigated in detail. This era of study culminated with the
publication in 1990 of the classic book The Early Universe by Kolb and Turner, in which
the authors described ideas across the whole range of what had become known as particle
cosmology or particle astrophysics, including such topics as topological defects, inflationary
cosmology, dark matter, axions, and even quantum cosmology.

Although all these topics matured during the 1980s, if we look back at the papers of that
era, we are struck by the rarity with which any detailed comparison with observations could be
made. In that regard, particle cosmology in the nineties and onward has become a very different
subject from what it was during the eighties because, for the first time, there are observations
of a quality that seriously constrains some of the possible physics of the early Universe. Those
observations are of structure in the Universe, and a starring role among them is played by the first
detection of microwave background anisotropies by the Cosmic Background Explorer (COBE)
satellite, announced in 1992. These were the first observations that could be more or less directly
interpreted as constraints on early Universe physics. As we will see, by the middle of the first
decade of the twenty-first century, we should have a wealth of data constraining our conceptions
of what may have occurred during the Universe’s earliest stages, and, most likely, several of the
ideas described in Kolb and Turner’s book will have been banished from serious discussion.

This book is not about particle cosmology as a whole, but rather is about a single topic,
inflationary cosmology, introduced in a seminal paper by Guth (1981). This has been aresearch
field of lasting popularity; more papers have been written about inflation than any other area
of early Universe cosmology, and one of Guth’s favourite transparencies in review talks charts
the rise of the publication count. Although introduced to resolve problems associated with
the initial conditions needed for the Big Bang cosmology, its lasting prominence is owed to a
property discovered soon after its introduction: It provides a possible explanation for the initial
inhomogeneities in the Universe that are believed to have led to all the structures we see, from
the earliest objects formed to the clustering of galaxies to the observed irregularities in the
microwave background.

Our aim is twofold. First, we wish to give a unified view of the entire process of modelling
the inflationary epoch, predicting the small irregularities that it generates, and evolving these
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irregularities using linear equations that are valid as long as the irregularities remain small. The
resulting theoretical structure, starting with the quantum fluctuations of a free field, continuing
with general-relativistic gas dynamics, and ending with the free fall of photons and matter, is
perhaps one of the most beautiful and complete in the entire field of physics. Certainly, it lies
at the opposite extreme from ad hoc models, not of course confined to physics, whose only
merit is sometimes to make the author feel better than if the desired result had been written
down immediately. Let us hope that the theory is true as well as beautiful!

Second, we wish to describe the state of the art, with respect to both inflation model-building
and the confrontation of theory with observation. In the former area, Kolb and Turner’s above
mentioned book and Linde’s Particle Physics and Inflationary Cosmology were both written
in 1990, and since then, there have been many developments in the theoretical modelling
of inflation, including major shifts in the perception of which ideas are the most relevant.
Techniques for generating predictions for generic inflationary models also have come some
way during that period. The latter area is in the process of being revolutionized by observations
of the cosmic microwave background (cmb) anisotropy; the approval of two separate satellite
experiments, Microwave Anisotropy Probe (MAP) by the National Aeronautics and Space
Administration and Planck by the European Space Agency, to explore anisotropies down to
angular scales of a few arc-minutes promises data of a quality that will be hard to surpass
when it comes to constraining or excluding the inflationary cosmology. The rapid progress
in both areas means that we are providing something resembling a snapshot of the current
situation, though we believe that it will provide a useful orientation for at least some years to
come.

As mentioned already, our discussion focuses on the evolution of small irregularities. Be-
cause inflation ultimately is supposed to provide the origin of all structure, potentially any
measure of that structure can, in principle, be used to constrain inflation. This provides a
connection to a research area known variously as large-scale structure or physical cosmology,
which on its own is a much vaster research area than all of particle cosmology put together.
Much has been written on this topic; for example, four books produced after the crucial COBE
observations are those of Padmanabhan (1993), Peebles (1993), Coles and Lucchin (1995),
and Peacock (1999). By restricting ourselves almost entirely to the linear regime, our focus is
both narrower and deeper.

Incidentally, we use the phase “large-scale structure” to refer only to irregularities in mat-
ter density, such as the galaxy distribution and motions. The term usually does not include
microwave background anisotropies, the exception being the title of this book!

1.2 The Universe we see

Extensive discussion of the nature of the observed Universe has been given in the recent
textbooks just mentioned, and so, we will be brief in this introduction.

A description of our observed Universe can be broken into two parts: the global description
of the Universe, which is given in terms of a set of parameters that we call the cosmological
parameters, and the irregularities observed in the Universe.
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The cosmological parameters tell us about the geometry of the Universe, and about the mate-
rial contained within it. These parameters are defined in Chapter 2. The dynamics of an expand-
ing Universe are characterized by two quantities: the expansion rate, given by the Hubble para-
meter, and the spatial curvature. The latter, in fact, is determined by the amounts of different
types of material in the Universe. Direct observation shows that the Universe contains quite
a significant amount of baryonic matter, of which we are made, and also contains quite a bit
of radiation in the form of the cmb, which can be characterized by a thermal distribution at a
temperature Ty = 2.728 K. These are the only two forms of matter that are observed directly.
However, on the basis of standard particle physics, it is assumed that there is also a cosmic
neutrino background, contributing about the same energy density as the radiation. Beyond
that, there is substantial circumstantial evidence (though, as we write, no direct detection of
it) that the Universe contains a large (and probably dominant) amount of nonbaryonic dark
matter, of some as yet unknown form. The details of how the Universe, and particularly any
irregularities within it, will evolve depends on the nature of this dark matter. To get structure
formation models to work, it normally is assumed that there must be at least some so-called
cold dark matter, comprising particles with negligible velocity. However, there also may be a
component of hot dark matter (particles whose velocities are relativistic for at least some of
their evolution) or something more exotic yet. Another possibility, for which there is increasing
observational support, is that the Universe might possess a nonzero cosmological constant.

Determination of the various cosmological parameters is a key goal in cosmology, but one in
which much progress remains to be made. Of all those just listed, only the present microwave
background temperature is known to a satisfying level of accuracy. Other parameters, such
as the Hubble constant or the density parameter, remain the subjects of much controversy. In
Chapter 2, we briefly review the current observational status. We hope that, in the near future
(and for you the reader maybe even the recent past), the situation will become much more
definite; in particular, satellite measurements of cmb anisotropies promise to pin down many
of the cosmological parameters to a high degree of accuracy.

The second aspect of the observed Universe is the long-established realization that material
within it is distributed irregularly. Such irregularities are known as density perturbations.
An understanding of the origin and evolution of structure in the Universe is the outstanding
problem in cosmology at the moment, and this book is primarily about this topic in the con-
text of the inflationary cosmology. Measures of structure in the Universe now come from a
variety of sources. Historically, the distribution of galaxies was the most studied, popular-
ized though large galaxy redshift surveys such as the CfA survey in the mid-1980s. Nowa-
days, we have access to a much more diverse range of measures. The many observations of
anisotropies in the cmb, across a range of angular scales, tell us about structure in the Uni-
verse long ago when the microwave background was created. The velocities of galaxies can be
determined quite accurately, telling us about the gravitational attraction they experience. The
abundance of different types of object probes the size of the irregularities in the density of the
Universe — at the present epoch, clusters of galaxies are a useful probe, and the study of very
distant objects such as quasars can tell us about structure when the Universe was younger, as
can observations of distant galaxies with technology such as the Hubble Space Telescope and
the Keck telescope on Hawaii. All of these are discussed in Chapters 9 through 12.
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Within the context of inflation, all of these structures can be quantified by a small number
of parameters describing the initial perturbations, whose subsequent evolution is determined
by the cosmological parameters. Such parameters could be called the inflationary parame-
ters. They include as a minimum the overall amplitude and scale dependence of the density
perturbations; this might be, for example, a power law requiring two parameters that we aim to
fix through observation. In fact, the amplitude is already rather well determined by the COBE
satellite. In the simplest inflation models, this is all we need, but in more complicated versions,
some additional parameters might be necessary. If so, they too in principle can be determined
from observations. )

13 Overview: From cosmological inflation to large-scale structure

This book can be divided loosely into four parts. In Chapters 2 and 3, we introduce the homo-
geneous Universe and the role that inflation plays in setting its initial conditions. The second
part, from Chapters 4 through 8, concerns the development of inhomogeneities in the Universe,
from their inception during inflation up to the present. The third part, from Chapters 9 through
13, concerns observations and the way in which they constrain the theoretical development in
the first eight chapters. This part ends with an overview. Finally, the last two chapters, separated
from the main flow of the book, give a more advanced treatment of inhomogeneities in the
Universe, including complete derivations of some results that were assumed for the simpler
treatment in the main body of the book.

13.1 Hot Big Bang cosmology

We begin our discussion proper in Chapter 2 with a rather rapid summary of the Hot Big
Bang theory. This sets down some of our notation and allows us quickly to summarize the
results that we use later. Anyone desiring a more leisurely account will find one in any of the
books mentioned in Section 1.1. We collect quite a range of different results; in particular,
we analyze low-density Universes, both with and without a cosmological constant, as well as
the case of a spatially flat Universe with a critical matter density. The last case is the simplest
but is disfavoured by observation; we show that there are both theoretical and observational
reasons for also considering the low-density cases. By contrast, there is little motivation from
either theory or observation to consider closed Universes, where there is greater than a critical
density of matter, and we do not concern ourselves with that situation.

1.3.2 Inflation

In Chapter 3, we move on to a discussion of inflationary cosmology (Guth 1981), looking at the
general properties rather than at specific models. The definition of inflation is extraordinarily
simple: it is any period of the Universe’s evolution during which the scale factor, describing
the size of the Universe, is accelerating. This leads to a very rapid expansion of the Universe,
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though perhaps a better way of thinking of this is that the characteristic scale of the Universe,
given by the Hubble length, is shrinking relative to any fixed scale caught up in the rapid
expansion. In that sense, inflation is actually akin to zooming in on a small part of the initial
Universe. .

Inflation does not in any way replace the Hot Big Bang theory, but rather is an accessory
attached during its earliest stages. Inflation certainly cannot proceed forever; the great successes
of the Big Bang theory, such as nucleosynthesis (the formation of light elements) and the origin
of the thermal microwave background radiation, require the standard evolutionary progression
from radiation domination to matter domination, and it is assumed that inflation must end
some considerable time before that to allow generation of observed properties such as the
baryon—antibaryon asymmetry of the Universe.

As we see later, a sufficiently long period of inflation can resolve certain concerns about
the initial conditions necessary for the Big Bang cosmology to lead to a Universe such as our
own. In particular, it can explain why the Universe should be close to spatial flatness and why
it should appear homogeneous, at least on large scales. It was these problems that motivated
the original introduction of inflation by Guth (1981); although accelerated expansion, in fact,
already had been considered, most notably by Starobinsky (1980) but also much earlier, it was
the strong connection Guth made between rapid expansion and these problems that was the
true beginning of inflationary cosmology.

Nevertheless, these problems can no longer be regarded as the strongest motivation for
inflationary cosmology because it is not at all clear that they could ever be used to falsify
inflation. In fact, they have even been eroded to some extent; for example, it formerly was
thought that inflation necessarily gave a spatially flat Universe if it gave homogeneity, but
there now exist inflationary models that can give a homogeneous open Universe as well (see
Chapter 8). Linde in particular has been vocal (e.g., Linde 1997) in suggesting that the idea of
inflation as a theory of initial conditions may be very hard to exclude, and indeed only a few
possible observational signals, such as a global rotation of the observable Universe, would be
in conflict with inflation in this context (Albrecht 1997; Barrow and Liddle 1997).

By contrast to inflation as a theory of initial conditions, the model of inflation as a possible
origin of structure in the Universe is a powerfully predictive one. Different inflation models
typically lead to different predictions for the observed structures, and observations can discrim-
inate strongly between them. Future observations certainly will exclude most of the models
currently under discussion, and they are also capable of ruling out all of them. Inflation as
the origin of structure is therefore very much a proper science of prediction and observation,
meriting detailed examination. It is true that even if inflation fails as a model for structure
formation, one may be left with the possibility of inflation to fix the initial conditions and
some other mechanism for the origin of structure [topological defects being the only known
candidate, and a rather unpromising one at that; see Allen et al. (1997) and Pen et al. (1997)],
but if we learn that much, we have already learned a lot.

All the standard models of inflation are based on a type of matter known as a scalar field; scalar
fields are, among other things, thought to be responsible for the physics of symmetry breaking.
Particle physics has yet to offer a definitive view on the detailed properties of such fields and, in
particular, has not specified the potential energy, which, it turns out, is responsible for driving
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the inflationary expansion. The freedom exists to build a wide range of different inflationary
models, based on different choices of the potential energy and perhaps different motivations
for its particle physics origin. We reserve discussion of specific models until Chapter 8, to be
able to discuss them in relation to their predictions for structure formation. In Chapter 3, we
develop the machinery needed to deal with scalar fields in an expanding Universe, including
extensive discussion of an analytical scheme known as the slow-roll approximation, which is
used widely throughout the book. We also briefly discuss the end of inflation, an epoch known
as reheating, though its details are not important when considering structure formation from
inflation. )

133 Simplest model of structure formation

The key idea in studying structure in the Universe is that of gravitational instability. Stated
simply, this notes that if the material in the Universe is distributed irregularly, then the overdense
regions provide extra gravitational attraction and draw material toward them, thus becoming
more overdense. That is, under the action of gravity, irregularities become more pronounced
as time passes. At the present epoch, we find that on moderate scales (e.g., less than 10
Mpc), the material in our Universe is very unevenly distributed, in the form of galaxies and
clusters of galaxies. On larger scales, it begins to appear homogeneous. On the other hand, at
very early times, as sampled by the cmb anisotropies, the Universe is distributed much more
evenly. Gravitational instability provides a mechanism to get from a fairly smooth distribution
at that time to the more irregular present Universe. It is a dramatic success that this simple
picture goes a long way to explaining what is observed, and current attention is focused
entirely on the details of the gravitational instability process. This depends on the nature of the
Universe as a whole, for example, on how rapidly it is expanding and on how much material
is in it to provide the gravitational attraction, and it also depends on the form of the initial
irregularities. As we see, inflation provides the most promising theory for the origin of these
initial irregularities.

The detailed study of cosmological perturbations is a highly technical topic, and we have
chosen to give a simplified treatment within the main body of the book, in order to keep
it at roughly the same technical level as the rest of the book. Ideas from general relativ-
ity are avoided as far as possible. From time to time, our simplified approach requires us
to quote and use results without proper mathematical justification. Because an understand-
ing of cosmological perturbations is so central to current developments in cosmology, we
also provide two advanced chapters, 14 and 15, at the end of the book. For readers who are
interested, these give a fully self-contained and mathematically rigorous general-relativistic
treatment of cosmological perturbations, in which all the results quoted within the book are
derived. These can be studied either in their own right or used to fill in the gaps of the earlier
discussion.

We begin our discussion of structure formation in Chapters 4 and 5 by setting up some
of the machinery for the description of perturbations in an expanding Universe. Our strategy
is to keep the discussion as simple as possible, and so we focus on the simplest model, the
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cold dark matter (CDM) model. In this model the Universe contains a critical density of
material (making it spatially flat), all of the dark matter is cold, and the density perturbations
are of a type known as adiabatic. In these chapters, we carry out an analysis with minimal
reference to general relativity, really only needing the idea of a locally inertial frame in which
the laws of special relativity apply. Further, in certain circumstances perturbations on small
scales are amenable to a treatment using only Newtonian gravity. Here, small means relative
to the characteristic length scale of an expanding Universe, the Hubble length.

In these chapters, we do not concern ourselves with the origin of the perturbations, deferring
that until Chapter 7. We simply assume that there is an initial spectrum of perturbations that
can be taken to have power-law form. We discuss the statistical nature of the perturbations,
their description via their spectrum, and their evolution. This leads ultimately to predictions for
the present form of the perturbations, and for the anisotropies in the microwave background.
In addition to the temperature anisotropies, we discuss the polarization of the microwave back-
ground, which carries additional valuable information, as well as the effect on the microwave
background if the atoms in the Universe are reionized at some epoch well before the present,
enabling scattering of the microwave photons from the liberated electrons.

134 Extensions to the simplest model

Although theoretically the simplest scenario, a model in which the density is critical and all
dark matter is cold is not the only possibility, and we study extensions in Chapter 6. There is
considerable observational evidence that the density is less than critical, and the dark matter
need not all be cold. In particular, moving to a low-density Universe, either with or without a
cosmological constant, brings better concordance with large-scale structure observations.

Concerning the initial perturbations, an alternative to an adiabatic perturbation is an isocur-
vature perturbation, where the relative amounts of different materials are perturbed while
leaving the total density constant. However, this gives much larger microwave anisotropies for
a given size of density perturbation, and most likely cannot be the sole source of perturbations,
though they may accompany the usual adiabatic perturbation.

In Chapter 6, we also discuss gravitational wave perturbations. These are inevitable at some
level in all inflationary models. The amplitude of gravitational waves reduces rapidly once
they come within the Hubble length, and they can be important only on large angular scales
in the microwave background (those scales being larger than the Hubble radius at the time
the background was formed). As we write there is no way of telling whether a significant
fraction of the anisotropies that COBE sees are due to gravitational waves rather than density
perturbations, a possibility that has been given substantial attention in the literature [see Lidsey
et al. (1997) for a review]. However, in most models of inflation, and in particular within the
context of a class of models known as hybrid inflation, the gravitational waves have a negligible
effect.

We do not consider magnetic fields, either their possible generation during inflation or
their possible effects on observations of structure such as early structure formation and the
polarization of the microwave background radiation.
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1.3.5 Scalar fields and the vacuum fluctuation

In Chapter 7 we carry out a detailed calculation of the density perturbations produced by
inflation. Inflation gives rise to irregularities in the Universe because we live in a quantum
world, not a classical one. Inflation is assumed to be driven by a scalar field and, classically,
the result of the accelerated expansion is to drive the observable Universe toward a state of
perfect homogeneity. However, in a quantum world, perfect homogeneity cannot be attained;
we are always left with some residual fluctuations in the scalar field. The typical size of these
fluctuations is a property of quantum mechanics, which means that they can be predicted using
standard techniques, as we demonstrate in detail in Chapter 7. In particular, they do not depend
on the initial conditions before inflation, and so, the theory is highly predictive.

It is an extravagant claim that quantum fluctuations, normally associated with microscopic
phenomena, can lead to structures such as clusters of galaxies. The quantum fluctuations
occurring in the space between you and this page certainly do not do anything of that sort.
And, although it is true that in the early Universe the quantum fluctuations are much bigger than
those we normally consider, because the timescales are so much shorter and the energy scales
higher, they still will turn out to be small in the sense of being only a very minor perturbation on
the classical behaviour. The crucial difference is rather that the Universe is accelerating, which
means that the quantum fluctuations can be caught up in the rapid expansion and stretched to
huge sizes, orders of magnitude larger than the Hubble scale, which sets the scale of causal
physics. Once the fluctuation is taken to such a large scale, it is unable to evolve and becomes
frozen-in; crucially, scales are pulled outside the horizon with such swiftness that the amplitude
has no chance to tend to zero, but instead is frozen-in at a fixed nonzero value.

In early work on inflationary perturbations, they normally were described as giving a type of
density perturbations known as a scale-invariant or Harrison—Zel’dovich spectrum (basically,
because physical conditions do not change much as perturbations on all relevant scales are
produced). Since then, observations have developed to such an extent that this approximation
can no longer be used, and must be replaced by something more accurate. For the observations
described in this book, it normally proves adequate to approximate the perturbations by a
power-law spectrum, with different inflation models leading to different spectral indices. Future
observations can measure the spectral index very precisely, and hence discriminate strongly
between different models of inflation.

By the same mechanism, inflationary models inevitably produce gravitational waves at some
level. In some models, these may be significant enough to be detectable.

Although the inflationary perturbations typically are calculated in terms of the scalar field
perturbation, this leads to a perturbation in the total energy density of the Universe, and hence
in the spatial curvature of the Universe. This last is the most useful when one comes to consider
how the perturbations will evolve; the scalar field is not useful because it decays long before
the present. In the standard scenario, where the perturbations are adiabatic, the perturbation
in the spatial curvature remains constant as long as the scale is larger than the Hubble length.
This allows us to evolve the perturbations forward in time until the Hubble length grows
to encompass them in the postinflationary Universe; for the scales of interest for structure
formation, this happens in the recent past, where the standard Big Bang model applies.
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13.6 Models of inflation

The literature contains a large number of different models of inflation. A model of inflation
amounts to a choice for the potential of the scalar field (or fields) driving inflation, plus a means
of ending inflation. By this point in the book, we are able to predict the perturbations arising in
different models, using the results of Chapter 7, which enables a proper discussion to be made
in Chapter 8.

The main discussion focuses on two rather different paradigms. Throughout the early 1990s,
discussion was dominated by what we call single-field models. In these models, the scalar-
field potential often is chosen to be some convenient simple function, such as a monomial or
exponential, and the initial conditions are chosen such that the scalar field is well displaced from
any minimum (only obeying the condition that its energy density be less than the Planck energy,
where quantum gravity is thought to become important). In several such models, gravitational
waves may be produced at quite a significant level.

In the mid-1990s, however, this paradigm was challenged by a new wave of inflationary
model building, based on particle physics motivation such as the theories of supersymmetry,
supergravity, and superstrings. In the context of the last two of these, we do not expect inflation
to be possible for field values exceeding a Planck mass, regardless of whether the potential
energy there is larger than the Planck energy, because supergravity corrections tend to generate
a steep potential that is unable to sustain inflation. This consideration, among others, has led to
the popularity of a new class of models known generically as hybrid inflation, which rely on
interactions between two scalar fields and utilize the flat potentials expected in supersymmetry
theories. These models can give substantial inflation for a much more modest evolution of the
scalar field, remaining always much less than the Planck mass.

Although, as we write, the hybrid inflation models are a recent innovation under intense
investigation, we feel that they are the most important development in inflationary model
building for a considerable time, and we devote a large amount of space to them. If indeed they
secure their place as the modern inflationary paradigm, supplanting the single-field models
described earlier, they will lead to an important rethinking of the observational implications
of inflation. For example, in these models the gravitational wave production is expected to be
negligible.

We end our discussion of inflationary models with two less standard possibilities. First, we
briefly discuss models based on extended gravitational theories, the aim being to obtain the
scalar field driving inflation from the gravitational sector of the theory rather than from the
matter sector as we have assumed thus far. In most regards, however, these models are simply
arewriting of the single-field inflation models, and share their drawbacks in comparison to the
hybrid scenarios.

Second, we discuss models of inflation leading to an open Universe. This was long thought
impossible, the belief being that, if a nonflat Universe was obtained it would show strong in-
homogeneities. However, it turns out that quantum tunnelling can lead to a homogeneous open
Universe. This is interesting because there is quite a lot of observational evidence supporting
low-density Universes, and it previously had been thought necessary to introduce a cosmolog-
ical constant to restore spatial flatness in order to be consistent with inflation. This is no longer
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the case; there is a whole class of inflationary models consistent with an open Universe. It is
even possible to realize the open inflation scenario within a hybrid inflation context.

1.3.7 Observations of structure

Having explored the theoretical side, we move on to comparison with observational data. This
retrospectively justifies the favoured models on which the earlier discussion focuses; they were
chosen, of course, to give a good representation of the observational data.

For the most part, we have sought to keep the discussion of specific observations short
because the observational situation doubtless will improve. The exception to this is the mi-
crowave background on large angular scales. The crucial COBE observations are the easiest
to interpret in the context of inflation, and they are also more or less definitive because, on the
largest angular scales, their accuracy is limited not by instrument noise, but by the statistical
uncertainty known as cosmic variance, arising from our having only a single microwave sky
to look at. Because the COBE experiment has reached its conclusion with the release of the
full four-year data set, the inflationary implications merit very detailed discussion and this is
done in Chapter 9.

In the future, it is expected that new microwave background anisotropy satellites will pro-
vide the best way to constrain cosmological parameters, including those describing the initial
perturbations. This is partly due to observational advances permitting a huge amount of useful
data to be taken, and partly because the theoretical interpretation is simple because it is all
linear perturbation theory. In anticipation of the future launch of the MAP and Planck satellites,
we make a detailed discussion of the prospects, aiso in Chapter 9.

Chapter 10 discusses galaxy motions and clustering. This material can be found in greater
detail in, for example, the books of Padmanabhan (1993) and Coles and Lucchin (1995). We
write at the commencement of two large galaxy redshift surveys — the 2dF survey and the Sloan
Digital Sky Survey — which will dramatically increase our knowledge of the geography of the
nearby Universe.

Chapter 11 is the only part of the book where we leave the linear regime, in order to discuss
the formation of gravitationally bound objects. Our main aim is to describe some of the methods
available to tackle this situation, the most prominent being the Press—Schechter theory, which
enables an estimate of the number density of objects as a function of their mass. The most
important constraint arising from this comes from the abundance of galaxy clusters, which
tightly constrains the spectrum on a scale of around 10 Mpc. In combination with COBE,
it leads to powerful conclusions, including the exclusion of the once-popular Standard CDM
model because it predicts far too many rich galaxy clusters. Press—Schechter theory also can be
used to estimate the abundance of high-redshift objects, such as quasars or the damped Lyman-
alpha systems seen in quasar absorption spectra. Finally, it can be used to say something about
when the Universe might have been reionized by radiation from the early stages of structure
formation; reionization that occurred sufficiently early, by a redshift of 20, for example, could
have quite a significant effect on microwave background anisotropies.
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Simply as an illustration, in Chapter 12 we combine observations from a range of sources.
This data compilation completes a circle in that it motivates a lot of the earlier discussion, in
particular, highlighting the failure of the Standard CDM model and indicating the most desirable
directions for modification. These detailed results doubtless will be superseded quickly, but
the general techniques for comparing theory and observation should continue to be useful. In
Chapter 13, we look toward the future.

1.3.8 Advanced topic: Perturbations in detail

We end the book with an advanced treatment of cosmological perturbations. The technical
level in these chapters is some way beyond that of the rest of the book, which is why we have
located this material away from the main flow, but the topic is of such central importance to
modern cosmology that we felt its inclusion imperative. These chapters use the full formalism
of general relativity and fully justify some of the results used, but left unproven, in Chapters
4 through 6.

The formalism set up is necessary for the computation of the present matter and radiation
spectra to sufficient accuracy to compare with presently available observations. Fortunately, to
work in these research areas, it is not necessary to understand fully their complexity because
there exist fitting functions and publically available computer programs [e.g., CMBFAST by Seljak
and Zaldarriaga (1996)] that can carry out these tasks. These can be treated as a black box —
you feed in the input and out comes the desired answer. Such tools are vital for the day-to-day
task of carrying out research in cosmology.

1.4 Notes on examples

Most chapters end with a few examples to allow the reader to practice applying the information
given within the chapters. Several of these examples require some simple numerical calcula-
tions for their solution; in cosmology these days, it is practically impossible to avoid carrying
out some numerical work at some stage. A typical task is the numerical computation of an
integral that cannot be done analytically, or the evaluation of some special functions. These
can be done via specially written programs, using library packages [e.g., Numerical Recipes
by Press et al. (1992), which is also an invaluable source of general information on scientific
computation], or a computer algebra package such as Mathematica or Maple.

At the end of the book, we list numerical answers to the examples as well as provide some
hints as to how we think they should be solved.
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The central premise of modern cosmology is that, at least on large scales, the Universe is
homogeneous and isotropic.! This is borne out by a variety of observations, most spectacularly
the nearly identical temperature of microwave background radiation coming from different
parts of the sky. Despite the belief in homogeneity on large scales, it is all too apparent that
in nearby regions the Universe is highly inhomogeneous, with material clumped into stars,
galaxies, and galaxy clusters. It is believed that these irregularities have grown over time,
through gravitational attraction, from a distribution that was more homogeneous in the past.

It is convenient then to break up the dynamics of the Universe into two parts. The large-
scale behaviour of the Universe can be described by assuming a homogeneous and isotropic
background. On this background, we can superimpose the short-scale irregularities. For much
of the evolution of the Universe, these irregularities can be considered to be small perturbations
on the evolution of the background Universe, and can be tackled using linear perturbation
theory; we discuss this extensively, starting in Chapter 4. It is also possible to continue beyond
the realm of linear perturbation theory, via a range of analytic and numerical techniques, which
we discuss only briefly, in Chapter 11. In this chapter and the next, we concern ourselves solely
with the evolution of the background, isotropic Universe. This usually is called the Robertson—
Walker Universe, often with Friedmann and occasionally with Lemaitre also named.

A cornerstone of modern cosmology is the theory of nucleosynthesis (Pagel 1997; Schramm
and Turner 1998), explaining the primordial abundance of the very light elements. It relies on
the Hot Big Bang model of the Universe, and its success assures us that the model gives
an essentially correct description of the Universe starting at some epoch before (though not
necessarily long before) nucleosynthesis takes place. The Hot Big Bang model is described in
many books (e.g., Kolb and Turner 1990; Padmanabhan 1993; Peebles 1993; Coles and Lucchin
1995). Starting at some epoch well before nucleosynthesis, the Universe consists of a hot gas,
which cools with the expansion of the Universe. It has several components, corresponding to
the various particle species present, among which are the photons now observed as the cosmic
microwave background radiation. At first the energy density is dominated by the relativistic
particle species (including photons), collectively termed radiation, and later it is dominated
by the nonrelativistic species, termed matter.

! By Universe, strictly speaking, we mean the region around us that can be explored by observation, limited by the
distance that light has been able to travel. We have no certain knowledge of more distant regions because light
from them is still on its way toward us. It is certainly reasonable to expect homogeneity and isotropy to persist
for quite some distance, but there is no reason why it should persist indefinitely and, as we see in Chapter 7,
there exist eternal inflation models saying that it definitely does not.
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In sharp contrast to this well-defined picture, we have no certain knowledge of the Universe
well before nucleosynthesis. According to current thinking, based on the Standard Model? of
particle physics and its most commonly considered extensions, the Universe is gaseous back
to some very early epoch, except possibly at brief phase transitions. In a loose sense, this entire
gaseous era often is termed the Big Bang, the adjective Hot now being omitted because it need
not be in thermal equilibrium or dominated by radiation. Before this, there is thought to have
been an era of inflation, during which the energy density of the Universe was dominated by
the potential of the scalar fields. Inflation is supposed to determine the initjal conditions for
the Big Bang, including the perturbations.

In this chapter, we give some basic results for the Robertson-Walker Universe, focusing
particularly on the Hot Big Bang and the subsequent matter-dominated era. The aim is to
provide a brief summary, before moving on to inflation in the following chapter.

In keeping with conventional notation in cosmology, we set the speed of light ¢ equal to
one, so that all velocities are measured as fractions of ¢c. Where relevant, we also set the Planck
constant 7 to one, so that there is only one independent mechanical unit. In particular, the
phrases “mass density” and “energy density” become interchangeable. Often it is convenient
to take this unit as energy, and we usually set the Boltzmann constant kg equal to 1 so that
temperature too is measured in energy units.

Newton’s constant G can be used to define the reduced Planck mass Mp =87 G)~
Thought of as a mass, Mp; =4.342 x 1076 g, which converts into an energy of 2.436 x 108
GeV. We use the reduced Planck mass throughout, normally omitting the word “reduced.” It
is a factor ~/87 less than the alternative definition of the Planck mass (e.g., as in Kolb and
Turner 1990), never used in this book, which gives mp = 1.22 X 10" GeV. We use Mp and G
interchangeably, depending on the context. Inserting appropriate combinations of Aand c, we
also can obtain the reduced Planck time Tp; = i/’ Mp, = 2.70 x 10~% s and reduced Planck
length Lp = #/cMp; = 8.10 x 1073 cm

12

2.1 The expanding Universe
2.1.1  Scale factor and Hubble parameter

If the Universe is homogeneous and isotropic, the distance between any two comoving points
is proportional to a universal scale factor a(f), where ¢ is cosmic time. A comoving point is one
moving with the expansion of the Universe, defined formally as the location of an observer
who measures zero momentum density. In most of the book, we deal with the case of a flat
(Euclidean) spatial geometry, and in that case it is convenient to normalize the scale factor to
be unity at the present epoch. Throughout, a subscript O indicates the present epoch.

The distance of a given comoving point, measured from our location, can be written r(t) =
xa(t). The constant x is called the comoving distance and is equal to the physical distance at
the present epoch.

2 Particle physics and cosmology are plagued by “standard models” of various sorts. When capitalized as here,
the phrase always refers to the Standard Model of particle interactions. This is distinct from, for example, the
Standard Cold Dark Matter model of structure formation.
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A slightly different time variable, known as conformal time, often is useful. This is defined
by
dt
T = a0
For a freely moving particle with velocity ¢ =1, the coordinate distance travelled during
a conformal time interval At is simply At. We apply this result to photons and massless

2.1)

neutrinos.

At any epoch, the rate of expansion of the Universe is given by the Hubble parameter
H =a/a. The Hubble time H~! and the Hubble distance or length cH ! (equal to H~! with
our chosen unit ¢ = 1) are of crucial importance. The latter often is called the horizon because it
provides an estimate of the distance that light can travel while the Universe expands appreciably.
(Here, “light” indicates an idealized carrier of information, travelling at speed ¢ = 1 without
collisions.) Later, we consider two more idealized quantities: the particle horizon, which is
the distance that light could have travelled since the beginning of the Universe at a =0; and
the event horizon, which is the distance that light will be able to travel in the future. Of these
three, the Hubble distance is the most important, which is why it has come to be called simply
“the horizon.”

For most purposes, we can ignore the expansion of the Universe in a region much smaller
than the Hubble distance, during a time interval much less than the Hubble time (in other words,
in a region of space-time that is small on the Hubble scale). In particular, causal processes such
as the propagation of waves and the establishment of thermal equilibrium occur as if there
were no expansion. Such processes cannot occur on much bigger scales.

Later in this book, when we study the inhomogeneous Universe, a crucial question is how
to quantify distance scales and, in particular, how a given scale compares with characteristic
scales such as the Hubble length. Perturbations usually are analyzed, as we see in Chapter 4,
by carrying out a Fourier expansion in comoving wavenumber k. The inverse wavenumber
defines a length scale corresponding to a particular mode of the inhomogeneities; at least while
perturbations have a small amplitude, they are stretched by the expansion, and comoving units
are the most appropriate ones to use. We can compare the modes with the comoving Hubble
length by forming the ratio k/a H; if this is greater than 1, the mode is said to be inside the
horizon, whereas if it is less than 1, the mode is outside the horizon, which means that the
scale is too large for causal processes to affect it. The key properties of inflation are due to
the way in which scales evolve in comparison to the Hubble scale; a scale can begin inside the
horizon and be stretched outside the horizon during inflation.

The relative velocity of a pair of nearby comoving observers, separated by distance
dr € H™', is v= Hdr « 1. With our chosen unit ¢ = 1, this is equal to the redshift d /A
of a photon passing between the observers. It is also equal to the fractional increase da/a in
the scale factor, and the wavelength A of a photon as seen by a sequence of comoving observers
stretches with the scale factor.

At the present epoch, the redshift z of light from a cosmological source is defined by

A'()S
1 +7=, (2.2)

)Vemjt
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where Aqps is the observed wavelength and Ay is the wavelength at the point of emission.
For z « 1, the redshift is given by Hubble’s law as z = Hdr, which would allow an accurate
determination of the present value Hj if the distances of galaxies were known accurately.
Despite decades of observations, this still is not the case. The uncertainty in Hy usually is
parameterized by a quantity 4 defined by

h
Hoy = 100h km s 'Mpc™! ~ 3000 Mpc ™!, (2.3)

where the last equality uses ¢ = 1. As we will see in Section 2.5.1, observations suggest that
it lies between 0.5 and 0.8. The present Hubble time and Hubble distance are

Hy' =9.78h7! Gyr, (2.4)
cHy ' = 2998k Mpc. (2.5)

Whether or not z is small, the redshift z of light emitted at time ¢, is given by

a(to)

1+Z_a(t1)' (2.6)
Rather than years or megaparsecs, it is often desirable to specify both times and distances in
terms of redshift. When redshift is used to refer to a time, it simply means the time at which
the scale factor was a fraction 1/(1 + z) of its present value. When used to refer to a distance, it
means the distance that light can have traveled since that time. Because the Universe expands
as the light propagates, the redshift distance is not equal to the redshift time multiplied by the
speed of light.

In cosmology, distances tend to be measured via redshifts, and because the Hubble parameter
is uncertain by a factor , the true physical distances are uncertain by a factor £~ even if, as
is usually the case, the recession velocities are very well measured. To indicate this, distances
normally are given in units such as 4 ~! Mpc.

2.12 Gravitational acceleration and the continuity equation

If gravity is negligible, @ = 0 and the expansion neither accelerates nor decelerates. According
to Einstein’s theory of general relativity, the acceleration (positive or negative) once gravity is
taken into account is

a p+3P A
= + —, 2.7
a 6MZ 3 @7

where, instead of Newton’s constant G, we are using Mp; = (87 G)~'/2. Here, p is the energy
density of the Universe and P is its pressure. In addition, we include A, the cosmological
constant. Many textbooks ignore the possibility of including such a term, but, increasingly,
observational evidence has come to point in favour of a cosmological constant in our Universe.
We therefore include it, when present always taking it to have the value necessary to make the
Universe spatially flat.
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The time dependence of p is given by the continuity (or fluid) equation,

a
p=-3—(p+P). (2.8)
This also can be written
d
a = 300+ P). 2.9)
da
In turn, this is equivalent to the energy conservation law for adiabatic expansion, dE = —PdV,

where E =Vp is the energy in a comoving volume V' o a®. The expansion of an isotropic
Universe is indeed adiabatic because heat cannot flow.

After inflation, the Universe is assumed to be a gas, except at possible phase transitions,
which are supposed to be brief. If the constituents of the gas have mean-square velocity v?,
the pressure is P = pv?/3 (remember that we are setting ¢ = 1). This applies separately to
each component of the gas, and a given component usually has either v < 1 (called matter or,
sometimes, dust) or v >~ 1 (called radiation). For the contribution of matter, the continuity
equation gives oy oca >, which expresses mass conservation. For the contribution of radiation,
it gives pr cca™*, the extra factor a~! coming from the redshift of particle energy between
collisions. In the absence of particle creation or annihilation, py/por oxa, and so the early
Universe is dominated by radiation.

It is useful to regard the cosmological constant as a possible time-independent contribution
to the energy density and pressure of the vacuum, so that

Protal = P + Pvac, (2.10)
Poal = P + Py, (211)

with Pvac = — P = M}:)Z[A

According to present beliefs, p + P is never negative, which means that, as we go back in
time, p is always increasing. As a result, the cosmological constant is negligible in the early
Universe, even if it is significant now. After inflation, gravity decelerates the expansion rate.
In contrast, as we see in the next chapter, P typically is close to —p during inflation so that
gravity accelerates the expansion rate. Indeed, the formal definition of inflation is as an era of
accelerating expansion, corresponding to P < —p/3.

2.1.3  The Friedmann equation
Using the continuity equation, the equation for ¢ can be replaced by the Friedmann equation

P A K
H'= — +—-——, 2.12
3M§1 3 a? ( )
where H =a/a is the Hubble parameter. This equation can be confirmed by multiplying it by
a® and differentiating it using the continuity equation to obtain Eq. (2.7). The constant K is

related to the spatial geometry of the Universe. The Universe is flat (Euclidean) if K = 0, finite
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or closed if K > 0, and infinite or open if K < 0. (It is also infinite if K=0, but, by custom,
one reserves the term open for the case of negative K .)

From the Friedmann equation, we see that, for a given value of the Hubble parameter, there
is a particular density, known as the critical density p., for which the Universe is spatially flat
in the absence of a cosmological constant. This is given by

pc =3 M3 H? (2.13)

and is a function of time. Its present value is pc,o = 1.882? x 107 g cm™?, which in astro-
physical units corresponds to

peo = 2775071 x 10" My /(h~! Mpc)®, (2.14)
where Mg = 1.99 x 10 g is the solar mass. This also can be written in particle physics units as
peo = (3.000 x 1073 eV)*h2. (2.15)

It is usually simplest to measure the energy density as a fraction of the critical density,
defining the density parameter Q = p/p.. This can be applied separately to different com-
ponents of matter in the Universe, such as nonrelativistic matter, radiation, and baryons. One
also can include a contribution Q, = A/3H? corresponding to the cosmological constant, so
that Qa1 = 2 + £24. Then the Friedmann equation can be rewritten as

K
T a?2H?'
Normally, 2 is time dependent, but if it equals 1, corresponding to the spatially flat case,
then it retains this value forever.

The present value of 2 is denoted €25. As we will see in Section 2.5, observations suggest a
value of € between 0.2 and 0.5, and may well support the existence of a cosmological constant,
too. As we go back in time, 24 converges rapidly to 0 and §2 converges rapidly to 1 (unless and
until we reach the era of inflation),> making K and A negligible in the Friedmann equation.

For K = A =0, the Friedmann equation is solved easily during radiation or matter domina-
tion. We have, respectively,

Qo — 1 (2.16)

pr X a b, axt?xr, 217

pmoca”,  axt ol (2.18)

More generally, if we know the dependence of p on g, the relation @ = a H can be integrated
using

¢ da
t=C —, 2.19
+ /0 TH 2.19)
where H(a, K, A) is given by the Friedmann equation. The constant C is taken to be 0, so that
t =0whena =0.

3 This statement could be untrue in the recent past if there are both a cosmological constant and nonzero spatial
curvature, but this case is rarely considered.
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22  Epochs
2.2.1 Radiation domination

We start with the era of radiation domination that contains nucleosynthesis, which is what we
generally mean by the term “Hot Big Bang.”

Thermodynamics during the Hot Big Bang has been much discussed (e.g., by Kolb and
Turner 1990), and we only cover the topic briefly in this introduction. A more detailed discus-
sion appears in Chapter 15. For definiteness we assume that there is a single epoch of radiation
domination. '

Provided that their momentum distribution has the blackbody form, the energy density and
temperature of a collection of photons are related by

2,V
T8«

30
Here, g/ = 2 is the number of spin states of the photon, and the Boltzmann constant has been

set equal to 1 (in normal units, it is 8.618 x 1073 &V K~!). The corresponding photon number
density is

oy = T, (2.20)

el
=3

ny T3, (2.21)
where the zeta function evaluates to £(3) = 1.202.

During the Hot Big Bang, photons and other relativistic species are in thermal equilibrium
at the same temperature, with zero chemical potential. This leads to blackbody distributions
for the photons and any other bosons, and the fermionic analogue for fermions. The energy and
number densities of each boson species are given by expressions (2.20) and (2.21), whereas
for fermions they are multiplied by 7/8 and 3 /4, respectively. In both cases, the mean energy
per particle is of order T and these expressions apply to a given species until it becomes
nonrelativistic at the epoch T ~ m, where m is the mass. Then the energy and number density
fall exponentially until thermal equilibrium fails, and interactions effectively cease. During
radiation domination, the energy density is dominated by that of the relativistic species, given
by

72

pr = 758(T) T, (2.22)

where

ah=Y g+ Y g 223)
bosons fermions
and the summation runs over all relativistic species.

The number of particle species, g.(7'), depends on the underlying particle physics model
being considered. In the Standard Model of particle physics, at high temperature, g, = 106.75;
extensions such as supersymmetry or Grand Unified Theories may increase this to several
hundred. At low temperatures, the number of degrees of freedom drops as particles become
nonrelativistic. This is shown in Figure 2.1.
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Fig. 2.1. The effective number of relativistic species g.(T') for the standard model, taking T as the photon
temperature (following Kolb and Turner 1990). Supersymmetry will roughly double g, at 7 > 100 GeV.
After the epoch T ~ 1 MeV, the electrons fall out of thermal equilibrium and the neutrinos acquire a
different temperature, and g, is defined by Eq. (2.22) with T the photon temperature.

During the Hot Big Bang, the entropy density s can be derived via the second law of
thermodynamics, d E = TdS— PdV, where V o« a® is acomoving volume with energy E = pV
and entropy S = sV. This can be rewritten as

d
dp = (sT — p— P) 7V +Tds, (2.24)

and, because p depends only on T, this implies that

(p+ P)
S = .

2.25
T (2.25)
It is dominated by the relativistic species and therefore is given by
272
s = —AIS_g*T3 ~ 1.8 g.m,. (2.26)

That is, the entropy is measured by the number density of photons. Because there is no heat
transfer in an isotropic Universe, the entropy S = a’s in a comoving volume is constant, and
therefore T o g, 13 /a. Ignoring the small variation of the prefactor, T falls like 1/a.

All of this holds until the neutrinos fall out of thermal equilibrium, at T ~ 1 MeV. Their
momentum distribution keeps the same form (as long as they are massless) with effective
temperature T, & 1/a. Shortly afterward, the electrons and positrons become nonrelativistic
and annihilate, except for the one electron per proton that maintains electrical neutrality.

Ignoring the latter and applying entropy conservation to the electrons, positrons, and photons



20 The Hot Big Bang cosmology

(the species in thermal equilibrium), we have g, =2 4+ 7/2 = 11/2 before annihilation (because
the electron and the positron each have two spin states) and g, = 2 after annihilation (because
only the photons are now relativistic). The photon temperature therefore is boosted relative
to the neutrino temperature by a factor /11/4. Each massless neutrino species now has a
temperature of 1.95 K, and if we continue to define g, by Eq. (2.22) with T the photon
temperature and assume that all three species are massless, its present value is

7 4/3
g0 =245 X 6 (ﬁ) = 3.36. , (2.27)

During radiation domination, Eq. (2.17) holds giving H = 1/2¢. This gives the timescale

1 2 T4

— = — gy —. 2.28
a2 = 905 M2 (2:29)
Substituting in values (see page 13) gives
1MeV\?
L~ papgie (IMVAT (2.29)
ls T

222 From radiation to matter domination

The only particle species whose present density is known to high accuracy is the photon.
The energy density in photons is dominated by the energy in the microwave background, a
blackbody with T = 2.728 K (Fixsen et al. 1996), which gives

Q,0h* =248 x 1073 (2.30)

with negligible uncertainty. Assuming in addition three massless species of neutrino, the total
energy density in relativistic particles (radiation) is

Qro=4.17 x 1079872, (2.31)

Note that the number of massless species is being inferred from standard particle physics
models and is not being measured directly. In particular, one or more neutrino species may
have significant mass, changing Qz o somewhat. Accepting Eq (2.31) as a working hypothesis,
the redshift of matter—radiation equality is given by

Q
1+ 2o = Q_Oo = 24000 Qoh>. (2.32)
R,

The corresponding temperature is
Teq = To(1 + zeq) = 65500 2ph* K. (2.33)
The definition of the density parameter indicates that at any epoch the matter component obeys

QM +2) 7 H? = const = QuH?, (2.34)
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where the second equality assumes matter domination today. By definition, at equality the
radiation density matches the matter density, and the Friedmann equation gives the Hubble
parameter at equality as

H.
_P% = V2QU? (1 + zeg)*? = 5.25 x 10°K°Q, (2.35)
0
yielding
H.
L9 — 219 Qoh. , (2.36)
aoHy

The comoving Hubble length at matter-radiation equality was therefore
(deqHeq) ™" = 1495 ' h™> Mpc. (2.37)

Now let us consider the evolution of the scale factor between radiation domination and
matter domination. If we take P = wp with constant w, then the continuity equation (2.8) can
be rewritten

% (pa®™ V) =0 (2.38)

and solved to give

2/3 2/(Bw+1
e o : [3w+1) (T /Gw+1) (2.39)
p= a3w+)’ “\5n "\ ’ ’

where the solutions are shown for both cosmic time ¢ and conformal time 7. In particular, this
includes the classic solutions

axt?? « t* (matter), (2.40)

aoxt/? o« t (radiation). (241)

Including both matter and radiation, the Friedmann equation becomes

3 4
Pe Ae Ae
H2 — q q q .
——3M%1 [(——a ) ~+ <—a ) :|, (2.42)

where aeq is the scale factor when the densities of matter and radiation are the same, and peq is
the density in each component at that time. This can be solved exactly using conformal time:

2
a(t) —2V2-2) (r_r_) + (=22 +2) (ri) ) (2.43)

deq eq eq

242 -2 [3M}
Teq = W2-2 [3Mp (2.44)
feq g

We see a smooth rollover between the two characteristic behaviours of radiation domination
and matter domination. There is no good way to rewrite this in terms of cosmic time.

with
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2.2.3 Matter domination

Now we consider the matter-dominated era. We have already seen the famous solution a o 1%/3
for the critical-density case. We now look at the low-density case, both without and with a
cosmological constant.

Mazrter domination in an open Universe
Because the curvature term in the Friedmann equation falls off only as a?, whereas the matter
energy density falls as a>, domination by the curvature term is a stable situation with late-time
solution a < z. However, we know that the present Universe is not a long way from the critical
density, and we should consider both terms. Again, use of conformal time facilitates a solution;
fixing K = —1 gives

OM,0 QoH;
= — ht—-1)= ht —1). 2.45
a(t) 6M§1 (cosht ) > (cosht ) ( )

Here, 7o must be chosen to give the scale factor its present value; from Eq. (2.16), this is
a(ty) = Ho_l/«/l — €.
Unfortunately, in terms of cosmic time an analytic solution for the evolution of the scale
factor can be given only parametrically, as
a(t) Qo

m = (COShw e 1) —2(1_—S20),

Q
Hot = (sinh¥ —¥) 55— o5,

(2.46)

(2.47)

where yr is a parameter whose present value again must give the correct a(f). The range of
is [0, 00). A useful equation giving the evolution of 2 with redshift, assuming that the Universe
only contains nonrelativistic matter, is

1+z
1+ Qoz

Example 2.3 indicates how this is derived. Provided that 1 + z >> 1/ — 1, spatial curvature
can be ignored.

Q(z) = Qo (2.48)

The cosmological constant
Many observations suggest that the density of matter in the Universe is less than the critical
density. If this is so, then an alternative to believing that the Universe has negative spatial cur-
vature is to introduce a cosmological constant A to restore spatial flatness. Then the Friedmann
equation reads

=2 (2.49)
ML 3

In much of the literature, one has to read rather closely to discern whether the phrase “low-
density Universe” does or does not include a cosmological constant to restore spatial flatness.
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In a Universe dominated by the cosmological constant, the solution is an exponential ex-
pansion rate

a(t) « exp <\/§ t) , (2.50)

the effective density remaining constant by definition.

Even if our Universe does possess a cosmological constant, it cannot be dominated com-
pletely by it and we should consider both matter and A contributions. Again, invertible analytic
solutions are not available. Similarly to the open case, we can calculate the redshift dependence
of the matter density, which now is given by

(1+2)°
T—Qo+(1+23Q
The Universe is close to critical density at (1 +2)* > 1/ — 1.

Q)= (2.51)

2.3 Scales
2.3.1 Characteristic scales

In general, a homogeneous and isotropic Universe is characterized by two length scales: the
Hubble scale and the curvature scale.

The Hubble scale is just the reciprocal of the Hubble parameter, H~!. It can indicate either
time or distance (length scales being converted to timescales through division by ¢, which we
have set to 1). The Hubble time represents the characteristic timescale of evolution of the scale
factor; during a Hubble time, a(z) grows by a factor e (in the context of inflation, this often is
referred to as an e-folding).* Because during normal evolution the scale factor is decelerating,
the Hubble time is usually a good estimate of the age of the Universe. Consequently, the Hubble
radius is normally a reasonable estimate of the size of the observable Universe, given by the
distance that light could have travelled since the Big Bang.

The curvature scale arises because the constant K in the Friedmann equation is related to
the spatial geometry. If K vanishes, the Universe is flat (Euclidean geometry); otherwise there
is spatial curvature, which becomes significant if we survey the Universe out to a distance of
order of the curvature scale

Feurv = @ |K|_1/2- (2.52)

This precise expression for the curvature scale comes from the form of the metric for a homo-
geneous Universe, the Robertson—Walker metric

~2

d
ds? = —di* + a¥(t) | ——s + Z3(d6* + sin> 0 d¢?) |, (2.53)
1 -Kx?

4 The continuous definition of time in Hubble units, including the variation of H, is given by thup = fif dt/H™! =
In(ar/a;).
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which also can be written in a more convenient form by redefinition of the radial coordinate as
ds* = —di® + a*(0)[dx* + |K| 7" sinh*(|K |'/x)(d6? + sin” 8 d )] (2.54)

for an open Universe. For a closed Universe, sinh is replaced by sin. For r < rey, we see that
the Euclidean spatial geometry is recovered. If K vanishes, as is suggested by inflation, the
curvature scale is infinite, leaving only the Hubble scale.

The ratio of the two characteristic scales is related to 2 via the Friedmann equation:

-1
VIR =11 = il . ' (2.55)

Teury

In open Universes the Hubble length is always less than the curvature scale, approaching it in
the limit €2 — 0, which is the typical late-time behaviour. In a closed Universe, the Hubble
length can exceed the curvature scale (though in that case it has no particular interpretation
as a length). Equation (2.55) needs slight modification for the contracting phase of a closed
Universe.

2.3.2 Particle horizon

The coordinate distance travelled by a freely moving photon, emitted at time ¢ and observed
by us now, is

fo
x(t) = / dt. (2.56)

a

This integral converges rapidly as we go back through the matter-dominated era, and continues
to do so as we go further back into the Big Bang era, though of course photons really are not
moving freely during that era. Ignoring this fact and making the idealization that the Big Bang
started at the epoch a = 0, the present distance of an object emitting light at that epoch is

Thor(f0) = aO/
0

This is called the particle horizon, and the same term is applied to the corresponding quantity,
with # replaced by an arbitrary epoch.

Evaluated at the present epoch, the particle horizon is crucially important because it defines
the size of the observable Universe. Assuming critical density and approximating the Universe
as always matter dominated, it is given by rnec(fo) = 2H, L

The particle horizon changes if we move to a low-density Universe. Keeping the excellent
approximation of matter domination back to the Big Bang, then in an open Universe,

o dt
=, (2.57)

(fo) o' oot [22 20 (2.58)
n = ———cos — . .
hor\40 1= QO QO

The prefactor to the cosh is just the curvature distance; the particle horizon distance exceeds
the curvature distance if 2, < 0.79.
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In a cosmological-constant model, even one giving spatial flatness, the answer is not available

analytically, but is given in integral form by (Carroll et al. 1992)
Thor(to) = Hy'! / :

” *Jo V1+3Q0z +3Q02% + Q02°

Hu and White (1997a) quote a fitting function that proves accurate to better than 1 percent in
cases of interest, which (ignoring a correction for the time of the matter-radiation transition
and correcting a typo in the sign of the prefactor of the logarithm) is
1 1+0.0841n € '
—————x/ﬂ—o .
In summary, and taking the critical-density case as an example, we have three important
scales:

(2.59)

Mhor(f0) = 2Hy (2.60)

) % Age of the Universe,
(2) Hy' =31y/2 Hubble distance/horizon,
(3) rhor(to) = 3% = 2H;'  Particle horizon.

Note that the distance that light travels is greater than we would get by naively multiplying the
age of the Universe by the speed of light, because the Universe was physically smaller when
the light first set out.

233 Predicted ages

As we will see in Section 2.5.1, observations seem to require #, > 10 Gyr. Taking €2 = 1, the
age of the Universe is

2
=3 Hy' =2.0607" x 10" s = 6.52h" Gyr. (2.61)

The consensus is that this can be in agreement with observations only if the Hubble parameter
h is near the low end of the measurements made.

For a given h, the Universe can be older if we move to a low-density Universe, either with
or without a cosmological constant. In an open Universe, the age becomes, from Eqs. (2.46)
and (2.47),

1 Q 2-Q

-1 | 0 -1 0 |

— — h - - R .

Io HO 1 5 (1 0)3/2 COS. ( ) (2 62)

As € tends to 1, the square bracket tends to 2/3, as it must. As §2o is decreased, the square
bracket increases monotonically, reaching unity in the limit £2o — 0. So, an open Universe can
be, at most, 1.5 times as old as a flat one for the same h, giving an age equal to the Hubble

time. For a spatially flat Universe with a cosmological constant, the boost to the age is more
dramatic, given by (Carroll et al. 1992)

) 2H;Y 1 . <1+«/‘1—- 520)
= n N
0 3 /1= %% V<%

(2.63)
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Fig, 2.2, Predicted ages for open Universes and for flat Universes with a cosmological constant.

which diverges in the low g limit. In place of the logarithm, the last factor also can be written
as sinh™! (/(T = $25)/§2). For ¢ = 0.2, about the smallest conceivable value, the age is 1.6
times the €2o = 1 value, for a given h. For Q, = 0.26, the age equals the Hubble time. Ages
are shown in Figure 2.2.

24 The cosmic microwave background

Many of the most dramatic observational results in cosmology in recent years have related to
the cmb and, in particular, its anisotropies. The anisotropies are discussed extensively later in
the book. Here, we review some of the properties of the microwave background itself (Hogan
et al. 1982; White et al. 1994).

The details of last scattering have been long understood. We can model the time of last
scattering by a visibility function, which measures the probability that a particular photon last
scattered in a redshift interval dz. Conveniently, this proves to be well approximated by a
Gaussian at mean redshift 7. = 1100 with width Az ~ 80, pretty much independent of all
cosmological parameters (Jones and Wyse 1985).°

Even if the density parameter of the Universe is less than unity today, it would have been
very close to 1 at the time of last scattering. Because matter—radiation equality is at 1 + z¢q =

> This assumes that there is no very eatly reionization of the intergalactic medium by ultraviolet photons emitted
by the earliest generations of stars and quasars, which could create free electrons that can scatter the microwave
photons. In inflation-based models, it is thought very unlikely that reionization could be early enough to rescatter
all of the microwave background photons to create a new last-scattering surface, but it may well be that some
modest fraction are rescattered, altering the anisotropy pattern. We discuss this further in Chapters 5 and 11.
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24000 k2, then for normal parameters, matter domination occurs a reasonable amount of
time before recombination. The time of recombination therefore can be estimated from the
matter domination result of Eq. (2.34) as

2 29 PH!
tec = -H == 0 0

e 1.8 x 10°Q; /*h~yr. (2.64)
The comoving particle horizon size at this time was 180$2, 12 -1 Mpc, the comoving Hubble
length was half that size at 902, V2p-1 Mpec, and the thickness of the last-scattering surface
was 7931/2h‘1 Mpc.

The corresponding angular sizes on the last-scattering surface are also of interest. In an open
Universe, the distance to the last-scattering surface is given by Eq. (2.58), and the “circum-
ference” of the sphere at that distance is obtained most directly from the metric (2.54). The
trigonometric functions conveniently destroy each other to give the circumference as

4r H(fl

o (2.65)

2Tt =

This is to be reduced by a small amount if we use the precise redshift of last scattering rather
than taking it to be at infinity; for example, if o= 1, then the distance to the last-scattering
surface is ris = 5820h ! Mpc, rather than 2H,, ' = 60002~ Mpc. The angle subtended by the
Hubble scale at last scattering is 0.869(1)/ 2 deg, and that by the scale corresponding to the
thickness of the last-scattering surface is 49(1)/ ? arc-minutes. Finally, the curvature scale itself
subtends an angle of §2o/2+/T — o rad. Experiments that probe scales larger than 1 deg,
such as COBE, are studying scales that were still larger than the horizon scale at the time the
microwave background was formed.

A cosmological-constant model has the standard Euclidean geometry, but the distance to the
horizon now is given by Eq. (2.60). Ignoring the logarithm, we see that the angle subtended by
the Hubble scale at last scattering is 0.86 deg and the thickness of the last-scattering surface
corresponds to 4 arc-minutes, both independent of € to a reasonable approximation.

25  Ingredients for a model of the Universe

We now give a brief summary of the observational status of the various parameters required
to specify a cosmological model. This breaks up naturally into two parts: the parameters that
describe the global state of the Universe and the parameters needed to describe the matter in
the Universe, in particular, the dark matter assumed to pervade the Universe. These two in
combination are what we are calling the cosmological parameters. When we come to study
models of structure formation, a third set of information is required, which is a description of
the initial perturbations in the Universe from which structure grows.

As we write, there is still considerable uncertainty concerning an accurate description of the
Universe. In fact, there is only a single cosmological parameter that is uncontroversially well
determined to an accuracy that permits its variation to be neglected when we study models of
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structure in the Universe, that being the present temperature of the microwave background,
To = 2.728 & 0.004 K. All other cosmological parameters may be varied, consistently with
observations, sufficiently to affect large-scale structure predictions. We do not aim to provide
a detailed discussion here, but rather a rough guide to what is possible and a list of references
that the reader can pursue.

251 Hubble parameter and age

Inrecent years, progress appears finally to have been made toward a consensus on the value of
the Hubble constant, but the story remains some way from being closed. Many measurements
now are coming in at around £ = 0.70, in particular, the Hubble Space Telescope observations
of Virgo Cepheids (Freedman 1997) and the type Ia supernovae method (Riess et al. 1996),
with uncertainties around 15 percent. On the other hand, values below & = 0.50 still appear
from time to time (e.g., Schechter et al. 1997). For reviews, see Jacoby et al. (1992) and Hendry
and Tayler (1996).

The age of the Universe was long thought problematic in the context of a critical-density
Universe, with many estimates of globular-cluster ages, based on stellar evolution, being up-
ward of 15 Gyr. This changed dramatically when the Hipparcos satellite measured a large
number of stellar parallaxes. The stars turned out to be farther, hence brighter and younger,
than previously thought, bringing down the age limits (Reid 1997; Feast and Catchpole 1997;
Chaboyer et al. 1998). (This also lowered the Hubble parameter estimated by distance ladder
techniques.) A safe lower limit from globular-cluster ages seems to be about 10 Gyr, with
perhaps an extra gigayear to be added to allow them to form in the first place.

A critical-density Universe with & = 0.70 has an age below 10 Gyr, incompatible with even
the lowest estimates of the age of the Universe. When theorists consider the critical-density
case, the usual choice is therefore = 0.50, which comfortably passes the age constraint. The
advantages for structure formation of an even lower value have been spelled out by Bartlett
et al. (1995), but such values sit uneasily with direct observations.

An interesting result is a demonstration that the local and global Hubble constants cannot
differ greatly, using type Ia supernovae (Kim et al. 1997). This counters arguments that if we
live in a significantly underdense region, the local expansion rate in the surrounding tens of
megaparsecs, which most measurement techniques sample, might be much higher than the true
expansion rate. Although such an effect may persist at the 10-percent level or so, it cannot be
large enough to reconcile a very high locally measured value with the age of a critical-density
Universe.

In conclusion, the view that we take is that the “reasonable” range for 4 is between 0.5 and
0.8, and although values outside that range are not inconceivable, they are disfavoured.

252 Density parameter

It has long been accepted that most of the mass in the Universe neither emits nor absorbs
radiation; it is dark as opposed to luminous. But observation of the luminous matter probes,
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through gravity, the total mass density, and this allows us to estimate the density parameter
€ in a number of ways. In a rich galaxy cluster, observation of the luminous matter enables
us to infer the cluster mass density and hence the total cluster mass. As will be discussed in
connection with Eq. (2.68), this leads to one way of estimating the density parameter. The
growth of perturbations in the Universe is affected by the mean mass density, and we will see
that this too provides useful information about the density parameter. Finally, observations of
supernovae at high redshift give information about the expansion rate of the Universe, and
hence about both the density parameter and the cosmological constant. Collectively, this body
of evidence suggests a value of 2 in the range 0.2 to 0.5.

2.53 Cosmological constant

Direct measurements of the density parameter say nothing about the cosmological constant, but
compatibility with the simplest models of inflation requires a flat spatial geometry. The simplest
way to make a low-density Universe compatible with these models is to add a cosmological-
constant term. We only consider the cosmological constant with the value chosen to restore
spatial flatness.

A large cosmological constant has a very significant influence on the expansion rate at late
times, which can be probed observationally in several ways. The most important at present is
the magnitude-redshift relation for distant type Ia supernovae, which are believed to be good
standard candles once a correction for rate of decay of light emission is taken into account.
To many people’s surprise, the evidence is strongly in favour of a cosmological constant
(Perimutter et al. 1998; Schmidt et al. 1998). In particular, for spatially flat cosmologies,
the best-fit 2 is about 0.3, with A comprising the remainder. One possibility is that this
cosmological constant may be an effective one rather than a true one, and indeed may be
varying slowly with time. Such behaviour can be modelled via the potential energy of a scalar
field, in exactly the same way as inflation is.

Another way of constraining A is via gravitational lensing (Kochanek 1996; Falco et al.
1998), which gives €2, < 0.74 at 2-o confidence. We find that large-scale structure models
tend to support the lensing limit. If these measurements are all correct, then €2 must be not
far from 0.3 to 0.4 or so.

2.54 Baryonic matter

In cosmology, ordinary matter is referred to as baryonic matter or simply baryons, because
the protons and neutrons (baryons) rather than the electrons account for practically all of its
density, denoted 2.

Nucleosynthesis [Alpher et al. 1948; Hoyle and Tayler 1964; Walker et al. 1991; see Pagel
(1997) and Schramm and Turner (1998) for reviews] provides the best estimate of the baryon
density. Although the theoretical calculations are well developed and accurate, the observa-
tional data require considerable interpretation. Consequently, although the theory of nucle-
osynthesis is undoubtedly one of the great successes of cosmology, the limits on the baryon



30 The Hot Big Bang cosmology

density are not as tight as we would like. A typical example (Copi et al. 1995a,b) gives
0.010 < Qph? < 0.022, (2.66)

with even higher values obtained by some authors (Hata et al. 1995; Kernan and Sarkar 1996).
This range seems intended to correspond to the 95 percent confidence range (though without
any implication that the error bars can be treated as Gaussian within that range). When we
refer to the nucleosynthesis value of §2,, we mean the central value of the Copi et al. range,
namely

QMh? = 0.016. (2.67)

Observations (Tytler et al. 1996) of the deuterium abundance in quasar absorption systems
suggest that the true value may well be toward or even beyond the top of the quoted range.
(Results often are quoted in terms of the ratio of baryon and photon numbers 7; the conversion
is np = 2.68 x 1078Qph2)

The ratio 2,/ 20 can be estimated by looking to clusters of galaxies, an approach popularized
by White etal. (1993b). Originally labelled the “baryon catastrophe,” this is now normally given
the less emotive title of the “cluster baryon fraction.” The majority of the baryons in clusters
tend to be in the form of hot X-ray-emitting gas, the distribution of which also can be used
to measure the total mass of the cluster from the condition for hydrostatic equilibrium in the
gravitational potential well, admittedly with some modelling uncertainties. Because clusters
are such large objects, we expect (with support from simulations) the balance of material within
them to be representative of the Universe as a whole. White and Fabian (1995) compiled data
for thirteen clusters, and obtained a baryon fraction

Q h\ T
Q—Z =0.1470% (E) (2.68)
at the 95 percent level.

Given the nucleosynthesis value of €y, this implies that the Universe has a low density, per-
haps around 0.4. The cluster baryon fraction is inconsistent with nucleosynthesis in a critical-
density Universe, unless the theory of nucleosynthesis is somehow flawed, either through the
interpretation of observations (which seems rather unlikely) or through the intervention of new
physics (e.g., Gyuk and Turner 1994; Mathews et al. 1996). Alternatively, the cluster mass
determinations might be wrong, and there is evidence that X-ray mass determinations may be
too low (e.g., Gunn and Thomas 1996; Wu and Fang 1997), presumably because the true gas
distribution is more complicated than the modelling currently allows. Finally, we might worry
whether the earlier statement, that the cluster baryon fraction should accurately represent the
universal value, stands up to examination because determinations in different clusters do not
appear completely consistent (Loewenstein and Mushotzky 1996); it is not clear at present
whether the differences can be explained away through systematic errors (implying that the
uncertainties typically have been underestimated), or whether they genuinely undermine the
claim that clusters fairly sample the material content of the Universe.
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An ambitious goal is to derive the baryon density from first principles, a topic known as
baryogenesis. It cannot be derived from decoupling from thermal equilibrium, as can the
massive neutrino case discussed shortly, because the density is determined not thermally but
because there is a conserved quantity, the baryon number, that is nonzero in our present
Universe. A common assumption is that, at high energies, the Universe has zero net baryon
number, and that the baryon number is generated by some baryon-number violating processes
in the early Universe. Within the Standard Model, only nonperturbative weak interactions
violate baryon number. Many extensions to the Standard Model violate baryon number. See
Dolgov (1992) for a review. At present, there is not even an order-of-magnitude theoretical
understanding of the baryon number of the Universe.

The baryonic dark matter could reside in a number of forms, including cold gas and compact
objects, the latter having been detected via microlensing observations and therefore being
present in some reasonable abundance. A detailed account of the possibilities can be found in
Carr (1994).

2.5.5 Cold and hot dark matter

Particle physics has offered no shortage of nonbaryonic dark matter candidates (e.g., Jungman
et al. 1996a), from massive neutrinos to axions or the lightest supersymmetric particle (Section
6.1.2). As far as large-scale structure is concerned, it is more fruitful to classify dark matter
by its random motion than by its particle physics origin.

CDM refers to particles with no significant random motion, at least as far as structure forma-
tion is concerned. To be precise, their random motion is nonrelativistic when even the smallest
cosmologically interesting scales come inside the horizon. It is the simplest option because,
by definition, the individual particle properties are unimportant, so that their cosmological
influence is specified fully by the density, Qcpm. CDM candidates can be elementary particles
(the lightest supersymmetric particle being the favourite candidate) or much more massive
objects such as primordial black holes. As we see later, structure formation models based on
inflationary perturbations nearly always feature at least some CDM, and they often are referred
to generically as CDM models.

At the other extreme is hot dark matter, which is still relativistic when galaxy scales enter
the horizon, and between the two extremes lies warm dark matter. These are more complex
possibilities because the cosmological effects of such matter depend not only on the density
but also on the nature of the random motion. In particular, we need to know the freestreaming
length, measuring the typical distance that a particle is able to move.

Commonly, the need to introduce extra parameters describing the particle motions is avoided
by making a specific assumption, for example, that the hot dark matter takes the form of a mas-
sive neutrino. With this assumption, the relation between the particle mass (which determines
its random motion) and its density is fixed, namely

> my,
Qhr == 2.6
94eV (2.69)
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where the sum is over any neutrino types with mass less than about 1 MeV, implying that they
are relativistic at decoupling. That the density scales linearly with mass is easy to understand;
because the particles are relativistic at decoupling, the final number density is independent
of the particle mass. The detailed answer arises as follows (see, e.g., Kolb and Turner 1990).
We have n, =(3/4) x (4/11) n,,, where the 4/11 comes from the difference in temperature
(Section 2.2.1) and the 3/4 because neutrinos are fermions and the photons are bosons. From
Egs. (2.20) and (2.21) the mean photon energy is 2.7 T, and the present energy density in
radiation is given by Eq. (2.30). Putting all of this together gives Eq. (2.69).

For neutrinos of mass above 1 MeV, the assumption of decoupling while relativistic breaks
down and a much more sophisticated analysis becomes necessary; see, for example, Kolb and
Turner (1990). The total energy density begins to fall below the linear extrapolation, because
Boltzmann suppression reduces the number density of neutrinos before they decouple. There
is, in fact, a second solution in which the neutrinos would give a critical density at a mass of a
few giga-electron volts; however, this mass exceeds the laboratory bounds on all three of the
known neutrino species.

For a hot component of sufficient density to be interesting, we expect a mass in the range
(depending somewhat on &) from a few electron volts to a few tens of electron volts. This is
around the current experimental bounds on the electron neutrino mass, but well below the limits
on the other two known species. (Neutrino oscillation experiments are providing increasing
evidence of nonzero neutrino masses, but only give the difference in the mass squared, rather
than the actual masses.) With such masses, the neutrinos will be relativistic early on but will
have become nonrelativistic by the present. Neutrinos are the only particles in the Standard
Model that, through its extension to allow them masses, also can be the dark matter. If they
are used in this way, we must be careful to make the appropriate modifications, in particular
to the effective number of massless species in the Universe.

There are hot (or warm) dark matter candidates other than neutrinos and, in that case, the
necessity of introducing extra parameters to describe them cannot be evaded. And that is only
the start of an increasing sequence of complexity; for example, the dark-matter particles could
decay (presumably into another form of invisible matter) or even annihilate. So far, however,
these options have not received a huge amount of attention; the standard assumption is that
the dark matter is either entirely cold or is a mixture of cold and hot. We return to some of the
more exotic examples in Chapter 6.

26  History of our Universe

We end this chapter with an overview of the history of the Universe, including the speculative
era before nucleosynthesis.

Nucleosynthesis can be considered as beginning at a time of order 1 s, corresponding to a
temperature of order 1 MeV and an energy density of order (1 MeV)*. The regime of much
bigger energy density is the realm of the particle cosmologist. There is little prospect of ever
going more than a couple of orders of magnitude beyond 100 GeV through direct terrestrial
investigation (though probes of extremely high energy cosmic rays may have something to
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say). Within this realm, it is not completely unreasonable to imagine that present ideas in
particle physics can be extrapolated, and particle physicists have not been short of ideas as to
how the Standard Model might be extended. Many speculative ideas have been suggested for
what might happen in this regime, one of which is cosmological inflation. Although a test of
such an idea is outside the reach of particle accelerators, the observational consequences in
cosmology may be profound, as we see throughout this book. The early Universe thus offers
the possibility of acting as a distinctive probe of very high energy physics.

The observable Universe may have been created with energy density below the Planck scale.
More usually, it is supposed that the Universe does have a history extending all the way back
to the Planck scale. Whenever its history began, there may at first have been additional space
dimensions, which compactify only later.

There is virtually no understanding of what might happen beyond the Planck scale. A very
speculative possibility, which utilizes the duality properties of superstring theory, is the pre-
Big-Bang scenario (Gasperini and Veneziano 1993a,b). Here, a contracting Universe undergoes
some kind of tunnelling event to become an expanding Universe as the contracting phase ap-
proaches the Planck scale. Such a process may even be able to produce density perturbations,
though it remains to be seen if they can have the right form — in models so far, both the gravita-
tional waves and the adiabatic perturbations are too far from scale invariance, but isocurvature
perturbations may be created with a more reasonable shape (Copeland et al. 1997). We do not
discuss the pre-Big-Bang scenario further here; for a review, see Gasperini (1997).

Taking the history to begin at the Planck scale, we can divide it loosely into a series of epochs:

o Mp > p'/*>100GeV
In this very wide regime of densities, there is little indication as to the appropri-
ate underlying physics (100 GeV being the electroweak energy scale, specified by
the masses of the W and Z particles). In this regime, the standard tool is speculative
extrapolations from the physics that we do understand, with the assumption that the
general techniques and principles still apply. It is in this regime that cosmological
inflation would occur, and we are assuming that it does.

After inflation ends, the Universe is dominated by nonrelativistic particles (matter
dominated) for some time; we might refer to this era as a Cold Big Bang. Eventually,
the nonrelativistic particles decay into relativistic particles and produce a radiation-
dominated Universe. This process is called reheating. In the simplest scenario, radia-
tion then dominates until the onset of the present matter-dominated era.

In more complicated scenarios, radiation domination temporarily may give way to
an early era of matter domination, which ends when the relevant particles decay to
form radiation. Just before such a matter-dominated era, there might be an era of so-
called thermal inflation (Section 3.9), but this type of inflation would not generate the
inhomogeneities that are our main concern in this book. Whether thermal inflation
occurs or not, an early era of matter domination reduces the abundance of particles
that were produced earlier, which may be welcome. We may regard this reduction as
coming from the entropy that is produced by the particle decays signalling the end of
the matter-dominated era.
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e 100GeV > p'/* > 10eV

Barring very late decaying particles or other exceptional circumstances, the Hot Big
Bang begins at a temperature higher than 100 GeV, and we proceed on this assumption.
The relevant physics is described by the Standard Model, or some supersymmetric
extension of it. The first phenomenon is the electroweak phase transition, at which
electromagnetism and the weak interactions first gain their separate identities. If the
Hot Big Bang indeed begins before 100 GeV, this is the last possible time at which the
baryon asymmetry could be generated. Later, in the quark—hadron phase transition at
the QCD scale (~10'2 K), it becomes energetically favourable for the free quarks that
existed in equilibrium with the radiation sea to condense in hadrons such as protons,
neutrons, and pions.

In principle, these two events could be avoided if the start of the Hot Big Bang
were delayed, for example, by long-lived massive particles from an earlier epoch. Such
particles, or the related scalar fields, would have to play some role in creating the baryon
asymmetry as well as delaying the onset of the Hot Big Bang.

At the very latest, the Hot Big Bang must begin by T ~ 10MeV because otherwise
the standard nucleosynthesis calculation is invalidated. Nucleosynthesis occurs at 7 ~
0.1 MeV, when the protons and neutrons bind together into atomic nuclei, primarily
hydrogen and helium-4.

At around 10 eV, corresponding to 10° K, the nonrelativistic matter content in the
Universe reaches the same density as the relativistic, and the radiation era ends.

e 10eV > pl/4

With the onset of matter domination, the expansion rate increases to a(r) o 2. From
that point on, the temperature decreases more quickly than the (fourth root of the)
energy density. The first significant event of this epoch occurs at around 3000 K, when
decoupling of the radiation from matter occurs. The first event in this sequence is
recombination (somewhat of a misnomer because the objects in question were never
previously combined), in which the majority of the electrons bind with nuclei to form
atoms, the photon energies being insufficient to dislodge them. At this point the photons
remain coupled to the ionized electrons that remain. Shortly afterward, as the ionized
fraction falls further, radiation decouples completely from the matter, and the photons
propagate freely. We see these today as the microwave background.

Between decoupling and the present, structure must form in the Universe, including
the first large gravitationally bound systems. Before this time, the Universe is close
to homogeneity on all scales, with linear perturbation theory easily adequate to deal
with any irregularities that exist. According to the inflationary cosmology, structure
formation is brought on by perturbations laid down in the early history of the Universe.

In Universes that are not flat, another transition occurs when the horizon scale is of
the order of the curvature scale, and the Universe becomes curvature dominated. In a
closed Universe, this is followed by collapse.

Table 2.1 provides a short summary of the most important epochs in the standard model for
the history of the Universe.
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Table 2.1. A history of the Universe

t pl/ 4 T Event?
10745 108 GeV ~0 Inflation begins?
10732865 101343 Gev ~{ Inflation ends, Cold Big Bang begins?
1071865 10083 Gev 1053 GeV  Hot Big Bang begins?
107105 100 GeV 100GeV Electroweak phase transition?
10745 100 MeV 100 MeV Quark-hadron phase transition?
10725 10MeV 10MeV - ¥, v, e, e, n,and p all in thermal
equilibrium.
1s 1 MeV 1 MeV v decoupling, ee annihilation.
100s 0.1 MeV 0.1 MeV Nucleosynthesis.
10* yr leV leV Matter—radiation equality.
109 yr 0.leV 0.leV Atom formation, photon decoupling.
~10% yr 1073 eV 107%ev First bound structures form.
Now 3x1073r12Q* eV 278K The present.

2 The Hot Big Bang might be delayed or interrupted. If so, electroweak symmetry might not be
restored (no electroweak phase transition) and free quarks might never be present (no
quark—hadron phase transition). However, the success of the standard nucleosynthesis calcu-
lation shows that an uninterrupted Hot Big Bang must be under way before 7 ~ 1 MeV.

Examples

2.1 How many neutrino families would there have to be to make matter—radiation equality and
decoupling coincide, assuming 29 = 1 and 2 = 0.5?

2.2 Can an open Universe evolve into a closed one?

2.3 For a Universe containing only nonrelativistic matter (and no cosmological constant), show
that the Friedmann equation can be rewritten as

H(z) = Ho(1 + 2)(1 + Q02)/%.

Use this to derive Eq. (2.48).

2.4 Compute the Hubble radius at nucleosynthesis, assuming that it occurs at a temperature of
0.1 MeV. To what scale does this correspond today? What was the energy within a Hubble
volume at nucleosynthesis (expressed in solar mass units), and what mass is contained
within that comoving volume at the present epoch?
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3.1 Motivation for inflation

Primarily, this is a book about cosmological inflation, and one in which we intend to give as
up-to-date a viewpoint as possible. In the modern view, by far the most important property of
inflation is that it can generate irregularities in the Universe, which may lead to the formation
of structure. This allows the possibility of testing various aspects of the inflationary scenario,
and the bulk of our book is devoted to these topics.

However, the historical motivation for inflation was rather different, and arose largely on
more philosophical grounds concerning the question of whether the initial conditions required
for the Hot Big Bang seem likely or not. In this chapter, we begin by briefly discussing those
aspects of the historical motivation for inflation, before moving on to a description of the
classical dynamics of inflation.

3.1.1 Flatness problem

As we saw in Chapter 2, the Friedmann equation can be written as an equation for the density
parameter €2, Eq. (2.16). Ignoring the cosmological constant (or, if you like, including it in §2),
it is
K

alH?
If the Universe is flat (2 = 1), then it remains so for all time. Otherwise, the density parameter
evolves. The flatness problem is simply that during radiation or matter domination, the com-
bination a H is a decreasing function of time.! For example, in a nearly flat, matter-dominated
Universe, we have |1 — | o« £/, and in a nearly flat, radiation-dominated Universe, we have
[1 — €2| oc t. We know observationally that, at the present, §2¢ is not hugely different (certainly
not more than an order of magnitude) from unity, which implies that at much earlier times it
must have been extremely close to 1. To obtain our present Universe, then at nucleosynthesis,
for example, when the Universe was around 1 s old, we require that

Q-1= 3.1)

|Qtnae) — 11510716, (3.2)

At early times, €2 must be yet closer to 1.

! The combination aH also decreases in more general circumstances, such as during a thermal phase transition.



3.1 Motivation for inflation 37

The flatness problem states that such finely tuned initial conditions seem extremely unlikely.
Almost all initial conditions lead either to a closed Universe that recollapses almost imme-
diately, or to an open Universe that very quickly enters the curvature-dominated regime and
cools to below 3 K within the first second of its existence. For this reason the flatness problem
also is phrased sometimes as an age problem — how did our Universe get to be so old?

3.1.2  Horizon problem

In Section 2.4, we saw that, in the Hot Big Bang model, the comoving distance over which
causal interactions can occur before the microwave background is released (1802, 12p-1 Mpc)
is considerably less than the comoving distance that the radiation travels after decoupling
[5820h~! Mpc in a flat Universe, and somewhat more in a low-density Universe in accord with
Eq. (2.58) or Eq. (2.60)].

This means that microwaves coming from regions separated by more than the horizon
scale at last scattering, which typically subtends about a degree, cannot have interacted before
decoupling. The Hot Big Bang model therefore offers no prospect of explaining why the
temperature seen in different regions of the sky is so accurately the same; the homogeneity
must form part of the initial conditions.

A similar situation exists at nucleosynthesis: To preserve the success of the standard theory,
the Universe must be homogeneous on scales much larger than the horizon size at that time;
if there were fluctuations in the density from point to point then, because of the nonlinearity
of the nucleosynthesis process, the presently observed values would not be reproduced when
all these separate regions later were added together.

3.1.3 Unwanted relics

If the Hot Big Bang begins at a very high temperature, relics that are forbidden by observation
may survive to the present.

Perhaps the most problematic relic, from the modern viewpoint, is the gravitino. This particle
occurs in supergravity as the spin—% partner of the graviton, and has only gravitational-strength
interactions. In most versions of supergravity, the mass of the gravitino is of order 100 GeV,
in which case nucleosynthesis is upset if the Hot Big Bang begins before T > 10° GeV (Ellis
et al. 1986).

Another very troublesome class of relics comprises the moduli occurring in superstring
theory (de Carlos et al. 1993; Banks et al. 1994). These are spin-0 particles, correspond-
ing to the fields that parameterize the vacuum in the absence of supersymmetry breaking.
Their masses and lifetimes are typically of the same order as those of the gravitino but, be-
ing associated with scalar fields, they are even more likely to be overproduced in the early
Universe.

Depending on the theory, there also may be unwanted topological defects; for reviews, see
Vilenkin and Shellard (1994) and Hindmarsh and Kibble (1995). If the symmetry of a Grand
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Unified Theory is restored in the early Universe, magnetic monopoles are produced when it
is broken spontaneously. Their abundance typically is higher than observation allows, unless
they are connected by strings. Historically, getting rid of unwanted monopoles was one of
the main motivations for inflation. Cosmic strings, textures, and domain walls also may be
problematic, but that is more model dependent. Textures present no problem if their energy
scale is well below 10'® GeV, and neither do cosmic strings if the same is true of their energy
per unit length. Global strings need to be a couple of orders of magnitude lighter to avoid
problems. Stable domain walls are fatal unless their symmetry-breaking scale is less than a
million electron volts or so (Zel’dovich et al. 1975; Vilenkin and Shellard 1994), but they are
destabilized easily by giving one of the two vacua a slightly bigger energy density than the
other.

3.1.4 Homogeneity and isotropy

The horizon problem tells us that the large-scale homogeneity and isotropy of the Universe
must be part of the initial conditions. However, in practice, we know that the Universe is not
perfectly homogeneous, though it comes very close to it on large scales. A vital question then
is whether we can develop a theory of the origin of the inhomogeneity, or whether it too must
be consigned to the realm of initial conditions.

Within the Hot Big Bang model, the situation is not yet completely clear-cut. The simplest
interpretation of the anisotropies in the microwave background seen by the Cosmic Back-
ground Explorer (COBE) satellite is that they correspond to irregularities at the surface of last
scattering. Then their corresponding scale is much larger than the horizon size at that time.
With the Hot Big Bang model, such perturbations could not be generated causally, and again
would have to have been part of the initial conditions (Hu et al. 1994b; Liddle 1995). Howeyver,
it remains possible that these large-angle anisotropies are generated by gravitational effects
much closer to us than last scattering; this is what happens, for example, in topological defect
theories of structure formation.

So, the Hot Big Bang theory is unable to explain the large-scale homogeneity of the Universe.
It yet may be able to explain the generation of inhomogeneities, but as we see, the most attractive
way to generate the inhomogeneities is to go beyond the standard Hot Big Bang model.

3.2 Inflation in the abstract

The inflationary cosmology (Guth 1981; Albrecht and Steinhardt 1982; Linde 1982, 1983) is
not a replacement for the Hot Big Bang model, but rather an add-on that occurs at very early
times without disturbing any of its successes.

The precise definition of inflation is simply any epoch during which the scale factor of the
Universe is accelerating:

INFLATION <= 4 >0.
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Fig. 3.1. Schematic of the inflationary solution to the flatness problem. Whether there is a definite start
time to inflation or not is irrelevant. By definition, during inflation €2 is driven toward 1, and with sufficient
inflation it will finish so close by the time inflation ends that in all the subsequent evolution up to the
present it remains indistinguishably close. Only in the distant future will it move away again.

Inflation sometimes is described just as a rapid expansion, though it is not very clear with
respect to what the expansion is supposed to be rapid.

There is an equivalent alternative expression of the condition for inflation that gives it a
more physical interpretation:

d H™!
INFLATION +— —— <0
dt a

Because H~!/a is the comoving Hubble length, the condition for inflation is that the comov-
ing Hubble length, which is the most important characteristic scale of the expanding Universe, is
decreasing with time. Viewed in coordinates fixed with the expansion, the observable Universe
actually becomes smaller during inflation because the characteristic scale occupies a smaller
and smaller coordinate size as inflation proceeds.

If inflation occurs, then it is possible for all the aforementioned problems of the Big Bang
model to be solved. The easiest one to see is the flatness problem; the condition for inflation is
precisely the condition that €2 is driven toward 1 rather than away from it [Eq. (3.1)]. Figure 3.1
shows a schematic of the desired behaviour. Relic abundances can be reduced to a satisfactory
level by the expansion during inflation, provided that they are produced before the inflationary
epoch. The horizon problem can be solved because of the dramatic reduction in the comoving
Hubble length during inflation, which allows our present observable Universe to originate
from a tiny region that was well inside the Hubble radius early on during inflation, as shown
in Figure 3.2. A much more detailed account of these resolutions can be found in Kolb and
Turner (1990) and Linde (1990a).
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COMOVING

smooth patch

Fig. 3.2. Schematic of the inflationary solution to the horizon problem. The plot is in comoving units.
During inflation, the comoving Hubble radius decreases dramatically, allowing our entire observable
region (the ring marked “now” around the central dot indicating our position) to lie within a region
(the shaded smooth patch) that was well inside the Hubble radius at the start of inflation. Any initial
inhomogeneities (lying outside the smooth patch) finish up on scales vastly larger than our observable
Universe.

Assuming that we work within general relativity, the condition for inflation can be rewritten
as a requirement on the material driving the expansion. Directly from the acceleration equation
(2.7), with A = 0 or absorbed into p and P, we find

|INFLATION & p+3P< oJ

Because we always assume p to be positive, it is necessary for P to be negative to satisfy this
condition, which is independent of the curvature of the Universe.

33  Scalar fields in cosmology

To obtain inflation, we need material with the unusual property of a negative pressure. Such
a material is a scalar field, describing scalar (spin-0) particles. Although, as yet, there has
been no direct observation of a fundamental scalar particle (such as the Higgs particle), such
particles proliferate in modern particle theories. They play a crucial role in bringing about
symmetry breaking between the fundamental forces. Scalar fields were introduced by particle
physicists long before particle cosmology came into being as a subject, but were pounced upon
by the cosmology community because of the range of interesting phenomena in which they
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may partake. Inflationary cosmology is one arena where they play a vital role; they possess
the unusual feature of a potential energy that may redshift extremely slowly as the Universe
expands. This corresponds to an effective equation of state with a negative pressure, which we
have just seen is exactly what we need for inflation. The scalar field responsible for inflation
is often called the inflaton.

The standard way to specify a particle theory is via its Lagrangian, from which the equations
of motion can be derived. We discuss this in detail for a scalar field in Chapters 7 and 14. For
now, as our starting point, we adopt expressions for the energy density and pressure of a
homogeneous scalar field ¢ = ¢(¢), which are

1 .
po =56 +V@) (3.3)

1,
Py=> ¢ — V(g). (3.4)

These eventually are derived as Eqs. (14.87) and (14.88). The term V(¢) is the potential
of the scalar field, which we might hope to derive from some particle physics motivation. For
now, we treat it more or less as a free function. Different inflationary models, as described in
Chapter 8, correspond to different choices for the potential.

Note that, although the scalar field acts as a perfect fluid, it does not possess an equation of
state relating P, and p, because the same energy density can correspond to different values of
the pressure if the energy density is distributed differently between the potential and kinetic
terms.

The equations of motion now can be derived directly by substituting these relations into the
Friedmann and continuity equations (2.12) and (2.8), respectively. Assuming a spatially flat
Universe, we obtain

, 1 _1_ 9
H = M [V(¢)+ 2¢ ] (3.5)
and
.. . dv
¢+3H¢=—£» (3.6)

which also is called the scalar wave equation. We remind the reader that throughout this book
we are using the reduced Planck mass Mp;, defined on page 13.

From the forms of the effective energy density and pressure, the condition for inflation is
satisfied, provided that ¢32 < V(¢). With a suitably flat potential, then even if this condition
is not obeyed initially, it very quickly comes to be satisfied, provided that the scalar field is
displaced away from the minimum of its potential.

Once inflation gets under way, then by definition the curvature term in the Friedmann
equation becomes less and less important. Normally, it is assumed negligible from the start; if
it is not, then the beginning stages of inflation will render it so.
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34 Slow-roll inflation

The standard approximation technique for analyzing inflation is the slow-roll approximation.
This approximation throws away the last term of Eq. (3.5) and the first term of Eq. (3.6),
leaving

2. V(@)
H* >~ TR (3.7)
3H¢ =~ —V'(¢), . (3.8)

where we have introduced the notation that primes are derivatives with respect to the scalar
field ¢, and that ~ indicates that quantities are equal within the slow-roll approximation.
For this approximation to be valid, it is necessary for two conditions to hold. These are

€¢) K 1, )l < 1, (3.9)

where the slow-roll parameters ¢ and 7 are defined by (Liddle and Lyth 1992, 1993a)

M2 V/ 2
e(¢) = TP‘ (—V—) : (3.10)
V//
n(¢) = M3, 7 (3.11)

Notice that € is positive by definition. The slow-roll parameters prove to be a very useful way
of quantifying the predictions of inflation and we use this notation throughout the book.

That these conditions are necessary for the slow-roll approximation to be valid can be found
easily by substitution. However, note that they are not sufficient conditions because they only
restrict the form of the potential. Because the full scalar wave equation is second order, the
value of ¢ can be chosen freely and, in particular, can be chosen so as to violate the slow-roll
approximation. It is therefore an additional “assumption” that the solution for a given potential
satisfies Eq. (3.8). However, we show in Section 3.7 that this assumption can be proven, by
considering the attractor behaviour of solutions to the equations of motion. In fact, the attractor
behaviour is vital for the success of the slow-roll approximation; otherwise, the fact that the
approximation reduces the order of the system by 1 would make it unable to represent generic
solutions.

Practically everything we need follows from Egs. (3.8) and (3.9), which we refer to simply
as the slow-roll conditions. In particular, Eq. (3.7) is an immediate consequence of Eq. (3.8)
and € < 1.

The slow-roll parameters make it is easy to see where inflation might occur on a given
potential. For example, for V(@) =m?¢?/2, they are satisfied provided that ¢* > 2M2,. For
such a potential, inflation proceeds until the scalar field gets too close to the minimum for the
slow-roll conditions to be maintained, and inflation comes to an end.

Only for a very few simple choices of potential can the full equations for the scalar field
evolution be solved exactly. On the other hand, from the slow-roll equations, it is easy to find
solutions, provided only that the relevant integrations can be performed analytically. However,
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in most circumstances it is not even necessary to find solutions to the equations of motion, as
we see later.

34.1 Relation between inflation and slow roll

The slow-roll approximation is a sufficient condition for inflation. To see this, rewrite the
condition for inflation as
a

—=H+H?>0. (3.12)
a

This is obviously satisfied if H is positive.? Otherwise, we require

H
Meanwhile, substitution of the slow-roll equations yields
H M (VY
—_~IRAf7 ) ¢ 3.14
H - 2 (v) ¢ G-19

Consequently, if the slow-roll approximation is valid (¢ < 1), then inflation is guaranteed.

As before, this condition is sufficient but not necessary, because the validity of the slow-roll
approximation is required in its derivation. It is therefore possible in principle for inflation to
continue even if the slow-roll conditions are violated, though in practice the amount of inflation
that occurs under this circumstance is very small.

An inflation model consists of a potential and a way of ending inflation. One way for inflation
to end is by violation of the slow-roll conditions as the field approaches a minimum with zero
or negligible potential energy. In such cases, it can be assumed that inflation comes to an end
when €(¢) reaches unity. This directly tells us the value of ¢ where inflation comes to an end
and, because ¢ diverges as the field approaches the minimum of the potential, this endpoint
will be displaced somewhat from the minimum. In models such as hybrid inflation, where
extra physics intervenes to end inflation, inflation can end while the slow-roll conditions are
still well respected.

3.4.2 Amount of inflation

The amount of inflation that occurs normally is quantified by the ratio of the scale factor at
the final time to its value at some initial time. Because this typically is a vast quantity, the
logarithm is taken to give the number of e-foldings N:

a(tend)

a(r)

N({t)=In , (3.15)

2 This would require P < — p in a general relativity theory and hence cannot be caused by a scalar field, though
it can occur in extended theories of gravity, which we explore in Chapter 8.
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where f.,q is the time at the end of inflation. This measures the amount of inflation that still
has to occur after time ¢, with N decreasing to 0 at the end of inflation. To solve the horizon
and flatness problems, around seventy e-foldings of inflation are required.

As we saw earlier, the best characterization of inflation is that the comoving Hubble length
1/aH isdecreasing. Therefore, there is a case to be made (Liddle et al. 1994) for quantifying the
amount of inflation by a slightly different quantity, that being the ratio of the initial comoving
Hubble length to the final one

a (tend)H (tend)

NO == or0

(3.16)
Although technically more accurate, during inflation a(¢) typically varies much faster than
H (1), and so, the difference is not very important. We stick to the usual convention and use
N(¢) to quantify inflation.

For most purposes, the only knowledge we need is how much more inflation will occur from
a given scalar field value ¢, rather than from a given time. This can be calculated immediately
via the slow-roll approximation, without any need to solve the equations of motion for the
expansion:

ten tend 1 [ V
N = Ip 2erd) _ / Hdt ~ — do, (3.17)
a(t) t z

MP] ¢end V,
where @eng 1s defined by €(¢ena) =1 if inflation ends through violation of the slow-roll condi-
tions.

3.43 Evolution of scales

When we later discuss the production and evolution of density perturbations, we will be inter-
ested in the history of each comoving wavenumber. An important question concerning a given
scaleis whether it is larger or smaller than the horizon; strictly speaking, we always should refer
to the Hubble length, but we follow common practice in using “horizon” and “Hubble length”
interchangeably, with the understanding that the latter is intended. Density perturbations nor-
mally are identified by their comoving wavenumber k, arising from a Fourier decomposition
of the density perturbation. We define a scale to be equal to the horizon when k = aH.

Recall that, by definition, during inflation the comoving Hubble length is decreasing whereas
at all other times it is increasing. A fixed comoving length scale k™! therefore may begin its
evolution considerably smaller than H~!/a, and by the end of inflation be considerably larger.
For any scale that does cross the horizon during inflationary evolution, an important epoch to
quantify is the time that it equals the Hubble radius, k = a H. With some simple assumptions,
this can be related to the number of e-foldings of inflation that occur after that time. The
evolution of a scale k, which we might imagine, for example, to be the scale presently equalling
the Hubble radius, k = ayHyp, is shown in Figure 3.3.

To make the identification of scales, we require a model for the complete evolution of the
Universe up to the present. For example, in the simplest viable cosmology, we can break the
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Fig. 3.3. Two views of the behaviour of a comoving scale k relative to the Hubble length (horizon scale).
By definition, the comoving Hubble length 1/a H is decreasing during inflation and otherwise increasing.
The upper panel shows physical coordinates, the lower one comoving. The vertical aXis covers many
powers of 10 in scale. A scale starts well inside the horizon, then crosses outside some time before the

end of inflation, reentering long after inflation is over.

evolution up into chunks as follows:

o From the time the scale k~! equals the Hubble radius to the end of inflation.

o From the end of inflation until the Hot Big Bang is restored. This epoch is considered in
Section 3.8. Here, we assume that the Universe behaves as if matter dominated during

it.
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e The radiation era from the end of reheating to the time of matter—radiation equality zoq.
o The matter era from .4 to the present.

This is far from the only possible evolution; for example, in Section 3.9 we discuss a modifi-
cation known as thermal inflation, in which one or more extra periods of inflation occur at low
energy scales.

We assume instantaneous transitions between the regimes. We use a subscript k to indicate
the value of quantities when k = aH during inflation, and the subscripts “end” and “reh”
to indicate values at the end of inflation and after reheating. Then, measuring all quantities
relative to the present comoving Hubble scale HO‘l /ao, we obtain

k ay Hy k dend Greh Geq Hi

- Greh Beq Tk (3.18)
apHy aoHp  Gend Greh aeq a0 Hy

The first fraction on the right-hand side gives the number of e-foldings N (k) of inflation
remaining when the scale k equals the Hubble radius. Substituting in typical values gives

k 10'6 GeV vi4 o v
N() =62~ In —— —In —p - +In Jhp — S In =28 (3.19)
apHp Vk Vend reh

The final three terms of Eq. (3.19) represent the uncertainty in the various energy scales
connected with inflation. In typical models of inflation, these factors are not expected to be
too large. Usually, it is not important to know the precise number of e-foldings at which our
present Hubble scale k = agp Hy equalled the Hubble scale during inflation. With the standard
evolution, we normally take this number to be 50 for definiteness. Some authors, including
ourselves in some papers, use 60 instead. A modification to the full history of the Universe,
such as thermal inflation, can alter the prefactor, normally reducing it, the extreme lower end
perhaps being N = 25.

The smallest scale accessible to large-scale structure observations is about 1 Mpc. This scale
would equal the Hubble radius about nine e-foldings after ag Hy does. So, all scales relevant for
large-scale structure crossed the Hubble radius during a fairly limited number of e-foldings,
some way before the end of inflation.

3.44 Initial conditions for inflation

Though not compulsory, it normally is imagined that an era of inflation begins at the Planck
scale, corresponding to V74 ~ Mp,. This is indeed desirable for two reasons. One is to prevent
the Universe from collapsing within a Planck time or so, if 2 is initially bigger than 1 (without
being fine-tuned to a value extremely close to 1). Note though that this need not be a problem
in a very chaotic situation where parts of the Universe are open and parts are effectively closed;
the latter may form black holes but the former remain viable initial conditions.

The other, which applies also to the case Q < 1, is that inflation protects an initially homoge-
neous region from invasion by its inhomogeneous surroundings. This invasion will propagate



3.4 Slow-roll inflation 47

with speed of order ¢ = 1, and a patch that is homogeneous at time ¢ will survive until time 7,
only if its initial size is bigger than

5] d @
r(t) =a(t)/ ;t = a(t)/ a—zag (3.20)

If inflation begins promptly, and we take 7, as the end of inflation, the integral is dominated by
the lower limit giving r(¢) ~ H~!(t). In words, the invasion travels about a Hubble distance in
the first Hubble time, but then stops so that the initially homogeneous patch need not be much
bigger than the Hubble distance. In contrast, if inflation is delayed, the integral is dominated
by the upper limit (whereas ?, is before the beginning of inflation), leading to

r(t) ~ MH_l(t) > H7\(p). (3.21)

a(t2)H(tp)

In words, the invasion continues indefinitely, and the initial patch needs to be huge to survive
until inflation eventually protects it.?

Slow-roll inflation is very effective at erasing memory of what went before it and, as aresult,
our Universe retains no memory of the era before it left the horizon. However, this does not
mean that we should ignore this era completely. On the contrary, a complete model of inflation
should specify not only a potential, but areasonable way in which the inflaton field can find itself
slow-rolling down the appropriate part of this potential, when our Universe leaves the horizon.

Let us start by asking what happens at the Planck scale. The almost universally accepted
proposal, due to Linde (1983, 1990a), is that conditions at this era are what he termed chaotic.
This does not refer directly to chaos theory; rather, it is intended to indicate that, initially,
the field takes on a wide range of different values in different regions of the Universe. One
imagines the Universe emerging from the Planck era with the scalar field well displaced from
any minimum, such that the typical energy is of order of the Planck energy. In regions where
the field has suitable values, inflation is able to begin. Some numerical investigation of the
details has been carried out, for example, testing to what extent spatial gradients in the scalar
field might inhibit the onset of inflation, with the conclusion that they cannot prevent inflation
from happening in at least some regions (Albrecht et al. 1985; Kung and Brandenberger 1990;
Yi and Vishniac 1993).

Because this early era of inflation does not lead to any directly observable consequences,
there is no necessity for the perturbations to be small, and indeed, it is perfectly possible for
the predicted density perturbations to be of order of unity even if the energy density of the
field is well below the Planck scale. Such a situation leads to a phenomenon known as eternal
inflation (Linde 1986; Linde et al. 1994), in which the quantum fluctuations in the scalar field
can dominate over the classical behaviour, allowing the field to diffuse up the potential as well
as to roll and diffuse down. Because the Universe expands more rapidly if the energy density is

3 In the mathematical limit f, — 0o, 7(¢) is called the event horizon, as opposed to the particle hotizon introduced
earlier. During inflation, it makes sense to pretend that the event horizon exists (taking 1, to be any late time
before the end of inflation, regarded as infinity). After inflation, it makes sense to pretend that the particle horizon
exists (taking the initial time to be any early time after the end of inflation, regarded as 0).
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higher, the physical volume may be dominated by regions moving up the potential. In this sit-
uation, parts of the Universe continue to inflate forever, emitting a constant stream of regions
where the field moves away from the eternal regime and enters a conventional inflationary
period. Any one of these regions could house our own Universe. Eternal inflation can occur
either at large field values or near a maximum of the potential, and we discuss it further (page
185) after we have derived formulae for the density perturbations.

Inflation need not be a common occurrence near the Planck scale. All we need is for our Uni-
verse to be an inflating region and, particularly with eternal inflation, the huge expansion of the
inflating region makes that in some sense likely, though admittedly this idea is hard to quantify.

Various things might happen between the Planck scale and the epoch when our Universe
leaves the horizon. The simplest possibility, and the one usually envisaged nowadays, is that
scalar fields continue to dominate the energy density of the Universe throughout this era, with
some form of inflation occurring most of the time. (It might perhaps be interrupted by one or
more periods when some field is oscillating around a minimum of the potential.) An alternative,
which used to be very popular, is that the Universe became dominated by radiation in thermal
equilibrium; in other words, a hot big bang begins, though not the Hot Big Bang as we have
defined it (page 12).

Whatever happens, our observable Universe is assumed to eventually undergo an era of
inflation, which starts while it is within the horizon and ends some tens of e-folds after it
leaves the horizon. This inflation must be of the slow-roll variety, if it is to explain the observed
large-scale structure. The field either will be rolling away from a maximum of the potential
or coming in from large field values; either way, it is quite likely that inflation is initially of
the eternal variety. If the field is rolling away from the maximum, an attractive possibility is
that the maximum corresponds to a fixed point under the symmetries of the model. This is the
usual case, normally signalled by the convention that the maximum is at ¢ = 0. In that case,
the field can be driven to the maximum by its interaction with other scalar fields, or by thermal
effects if there is thermal equilibrium. Alternatively, one might imagine that the initial field
values are chaotic, just as was postulated near the Planck scale, with our Universe happening
to be near the maximum.

We provide examples of these different mechanisms for starting inflation when we review
the range of inflation models in Chapter 8.

3.5 Exact solutions

For almost all known inflationary models, the slow-roll approximation works so well that
nothing more is needed. Even though it must by definition fail toward the end of inflation,
this typically only gives a small misestimation of the number of e-foldings that occur, and this
uncertainty is subdominant to the uncertainties in this quantity from the various energy scales
in Eq. (3.19).* Nevertheless, it is useful to have some exact solutions to the full equations of
motion in order to study their properties, and several are known.

4 In a specific inflationary model, V; and Veng can be computed fairly accurately, but the physics of reheating is
less well understood at present.
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35.1 Power-law inflation

The most prominent exact solution is power-law inflation (Lucchin and Matarrese 1985),
which, as we see later, has the extra advantage that the equations for the generation of density
perturbations also can be solved exactly.

Power-law inflation arises when the potential is chosen to take the exponential form

2
Vi(g) = Vyexp (—\/; Mim) , ‘ (3.22)

where Vj and p are constants. The spatially flat equations of motion then have the particular
solution

a = agt?, (3.23)

¢ Vo t
—=,/2p1 _ ). 3.24
Mp vapln (V pGBp—1) MPI) (324

The general homogeneous solution, with one extra initial condition, also can be found in a
parametric form (Salopek and Bond 1990), but solutions for any initial conditions rapidly
approach this particular solution, in accordance with the inflationary attractor behaviour.

Provided that p > 1, this solution satisfies the condition for inflation. The slow-roll param-
eters are simply € = n/2 = 1/ p, and are independent of ¢. With this potential, inflation never
comes to an end (though we discuss ways of circumventing this problem in Chapter 8).

Provided that the scalar field is the only matter in the Universe, it acts as a perfect fluid with
w = 2/3p, using the language of Eq. (2.7). This correspondence will break down if another
type of matter is also present, because the scale-factor evolution feeds into the effective equation
of state.

3.5.2 Other exact solutions

The technology exists to compute a variety of exact solutions, via the basic strategy of beginning
with the solution and deriving the potential necessary to support it. In this type of approach,
there is no control over the type of potential that emerges from such a procedure, and normally
the result does not take on a simple form.

The most investigated such solution is the intermediate inflation model (Barrow 1990;
Muslimov 1990). This gives rise to an expansion

a(t) x exp(Ath), 0< f <1, A>0. : (3.25)

It arises from the potential

-8 2 M2
V(g) (Mipl) (1 - % EZ"—I) , (3.26)
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where 8 =4(f~! — 1). The expansion is faster than any power law and slower than exponential.
As with power-law inflation, there is no natural end to inflation in this model. Note that the
asymptotic potential is just the power-law form Vygymp(¢) o ¢ 2.

The literature contains a variety of other exact inflationary solutions. There is only a single
case at present (Easther 1995) in which a model has been constructed so that the density
perturbation equations also can be solved, as they can for power-law inflation. In all other
cases, it is only the classical scalar field dynamics that have been solved exactly.

3.6 Hamilton—-Jacobi formulation of inflation

The Hamilton—Jacobi formulation (Salopek and Bond 1990) is a powerful way of rewriting the
equations of motion, which allows an easier derivation of many inflation results. The formalism
has applications to the general inhomogeneous situation, though we concentrate here on the
homogeneous version as applied to spatially flat cosmologies.

The formulation can be derived by considering the scalar field itself to be the time variable.
This can be carried out during any slow-rolling epoch in which the scalar field varies monoton-
ically with time. In its simplest form, it will break down during the oscillatory epoch that ends
inflation (though it is usually possible to patch together solutions from separate monotonic
epochs).

For definiteness, throughout we take ¢> > 0. If this is not satisfied, it can be brought about
by redefining ¢ — —¢.

Differentiating Eq. (3.5) with respect to ¢ and substituting in Eq. (3.6) gives

;2

2H = _¢—2. (3.27)
My,
Dividing both sides by ¢, permitted by the monotonicity assumption, gives
¢ = —2 Mg H'(¢), (3.28)

which gives the relation between ¢ and . This allows us to write the Friedmann equation in
the first-order form

HY$) = — V(g). (3.29)

[H'()) —
2M}

2My,

Equation (3.29) is the Hamilton—Jacobi equation. It allows us to consider H(¢), rather
than V(¢), as the fundamental quantity to be specified. Because H, unlike V, is a geometric
quantity, inflation is described more naturally in that language (Muslimov 1990; Salopek and
Bond 1990; Lidsey 1991). Once H(¢) has been specified, we immediately can obtain the
corresponding potential from Eq. (3.29). Also, Eq. (3.28) gives the relation between ¢ and r,
which enables us to obtain H(z), which, if it is desired, can be integrated to a(t). Therefore,
this is the most direct route to obtaining a large set of exact inflationary solutions; for example,
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H(¢) x ¢—#/? gives intermediate inflation, and

/1
H(¢) x exp (— 5 %) (3.30)

gives power-law inflation.
We can use the Hamilton—Jacobi formalism to write down a slightly different version of the
slow-roll approximation than we did earlier, defining slow-roll parameters €y and 7y as

H/(¢>>)2
€y = 2M2 (——— , (3.31)
! "\ H@)
H"(¢)
e = 2Mp ——— (3.32)
H()
In the slow-roll limit, ¢y — € and n; = n — €.
Some manipulation allows these to be written in various ways, such as
%)
2 dinH
oy $_ am am
V4+¢ /2 dlna
b dln¢ dinH’
=30 - dmé_ _dh (3.34)

3H$  dlna  dlna’

Consequently, the smallness of € and 7y is precisely the condition for neglecting the unwanted
terms in Egs. (3.5) and (3.6); however, the derivation of these conditions is exact, whereas that
using € and 7 required the slow-roll approximation to be valid. We also can consider €, < 1
to be the condition to neglect the first term in Eq. (3.29), and 7, < 1 to be the condition to
neglect the first term of its ¢ derivative.

With these new parameters, many results that were approximate in terms of V(¢) become
exact. First, the definition of inflation now is given precisely by

i>0&=¢ <1, (3.35)
and the equation for the number of e-foldings becomes

1 Tend 1 Dend H
lna(end): Hdt = — / F
¢

do. 3.
a(t) . 2M} ¢ (3.36)

Notice that, in terms of the new slow-roll parameters, the validity of the slow-roll approxi-
mation does not depend on any additional assumptions regarding attractor behaviour. This is
because when we discuss H(¢), we are dealing with the solution directly.

3.7  Inflationary attractor

If inflation is to be truly predictive, the evolution when the scalar field is at some given point on
the potential has to be independent of the initial conditions. Otherwise, any result, such as the



52  Inflation

amplitude of density perturbations, would depend on the unknowable initial conditions. How-
ever, the scalar wave equation is a second-order equation, implying that ¢, in principle, can take
on any value anywhere on the potential, and so, there certainly is not a unique solution at each
point on the potential. Inflation therefore can be predictive only if the solutions exhibit an at-
tractor behaviour, where the differences between solutions of different initial conditions rapidly
vanish. As we now see, the inflationary equations do indeed possess this vital property, though
it has not been discussed often in the literature (Salopek and Bond 1990; Liddle et al. 1994).

Related to this, we have noted already that the slow-roll approximation reduces by one the
order of the equations describing inflation. Written in the original form, this arises from the
dropping of the ¢ term in Eq. (3.6), and in the Hamilton—Jacobi form the dropping of the H’
term in Eq. (3.29). This means that some initial value of ¢(¢) [or equivalently, H(¢)], instead
of being a free parameter, is determined by the slow-roll equations. The attractor behaviour is
necessary if the slow-roll solution is to have any chance of representing the entire one-parameter
family of solutions it replaces.

To demonstrate the attractor behaviour, we use the Hamilton—Jacobi formalism, which
greatly simplifies the analysis. This was carried out first by Salopek and Bond (1990). We
restrict ourselves to linear homogeneous perturbations, which is all that is needed because,
classically at least, inflation does indeed generate large smooth patches. For simplicity, we also
assume that the perturbations do not reverse the sign of ¢, though the result holds under more
general circumstances.

Because we have chosen ¢ to be increasing with time, our aim is to show that all solutions
rapidly approach one another as ¢ increases. Suppose Hy(¢) is any solution to Eq. (3.29), which
can be either inflationary or noninflationary. Add to this a linear homogeneous perturbation
8 H(¢); the attractor condition will be satisfied if it becomes small as ¢ increases. Substituting
H(¢) = Ho(¢) + 6 H(¢) into Eq. (3.29) and linearizing, we find that the perturbation obeys

3
H)8H' ~ 32 HyéH, (3.37)

P!

which has the general solution

3 [? Ho(¢)
SH(¢) = SH(p) exp ( Wz J, Hio) d¢) , (3.38)
where 8 H () is the value at some initial point ¢;. Because Hj and d¢ have opposing signs, the
integrand within the exponential term is negative definite, and hence all linear perturbations
do indeed die away.

When Hy(¢) is an inflationary solution, the behaviour is particularly dramatic because the
condition for inflation, €, < 1, bounds the integrand away from 0. We obtain

SH 3 o—¢
(¢) < H(¢r)exp 5 ) (3.39)

That is, if there is an inflationary solution, all linear perturbations approach it at least expo-
nentially fast as the scalar field rolls (Liddle et al. 1994).
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Whether inflationary or not, the solution can be expressed in terms of the amount of expansion
because the term inside the integral is related to the number of e-foldings of expansion as given
by Eq. (3.36). This gives the following precise result (Salopek and Bond 1990):

SH(¢) = §H(¢o) exp[—3(Ni — N)], (3.40)

where the e-foldings are evaluated for the background solution Hy(¢).

Neither the assumption of linearity nor the assumption that ¢ does not change sign is very
restrictive. The latter case can matter only if the perturbation takes the field over the top of a
maximum in the potential because otherwise it will simply roll up, reverse its direction, and
pass back down through the same point, where it can be regarded as a perturbation on the
original solution with the same sign of . If the perturbation is nonlinear, then the solution
is made more complicated but, because the full equation is only first order, it is easy to see
that solutions are compelled to approach one another regardless of whether the perturbation is
linear or not.

Notice that the slow-roll solution is not precisely the attractor solution that all solutions to
the full equations approach. Generically, though, it is a good approximation to it whenever the
slow-roll conditions are satisfied.

Returning to the original equations of motion (3.5) and (3.6), the attractor behaviour that
we have demonstrated indicates that, regardless of initial conditions, the late-time solutions
are the same up to a time shift, which cannot be measured.

3.8 Reheating: Recovering the Hot Big Bang

Reheating is the process whereby the period of inflationary expansion gives way to the standard
Hot Big Bang evolution. For the main focus of this book — density perturbations — the epoch of
reheating is not of particular importance. Although it does contribute an uncertainty in relating
present scales to the inflationary epoch through Eq. (3.19), this typically has little impact on the
predictions from the inflationary scenario. On the other hand, an understanding of reheating
is crucial to our understanding of various other questions, such as whether topological defects
can be produced after inflation, whether gravitinos, for example, might be overproduced, and
whether baryogenesis can be brought about successfully.

The topic of reheating has seen some important developments during the 1990s, which have
led to a significant change of view since books such as Kolb and Turner’s (1990) were written.
For full accounts, see Kofman et al. (1994, 1997), Shtanov et al. (1995), and Boyanovsky et al.
(1996).

There are typically three parts to the reheating process:

(1) noninflationary scalar field dynamics,
(2) decay of inflaton particles, and
(3) thermalization of the decay products.

It is the theory of the second of these stages that has changed recently.
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3.8.1 Scalar field oscillations

Once inflation is over, the scalar field begins to move rapidly on the Hubble timescale, and
begins to oscillate about the minimum of the potential. This is a coherent oscillation, the phase
being the same at all points in the large homogeneous region created by inflation. If there
are no rapid particle decays (a situation that we will see exists if the only decay channels are
into fermions), then this oscillating phase can last for some considerable time because the
particle decay time still may be much longer than the Hubble time. Such a situation can be
described by looking at the time-averaged behaviour of the scalar field. For a potential that can
be approximated as ¢ near its minimum, the equation is just that of a harmonic oscillator, and
the average energy p, = (¢32) ; obeys the equation

s +3Hp,=0. (3.41)

This is exactly the equation for the density of nonrelativistic matter, and so, during the coherent
oscillation phase, the energy density falls as 1/a>, represented by a decay of the amplitude of
the oscillations. This was the result used to obtain the e-folding relation (3.19).

3.82 Coherent inflaton decays

The next step is to include the decay of inflaton particles, which will happen once the Hubble
time (i.e., the age of the Universe) reaches the decay time. One way of treating this is to insert
a phenomenological decay term F¢¢ directly into the left-hand side of Eq. (3.6). However,
this turns out not to be a valid way of introducing particle decays, even in the slow-decay case
in which only fermionic decays are available. First, as noted in a cryptic footnote by Kolb and
Turner (1990), it cannot be applied away from the oscillating phase. Second, it is not correct
to insert such a term directly into the equation for ¢ anyway, as noted by Kofman et al. (1994).
However, in the slow-decay case, such an equation is correct, provided that it refers only to
the time-averaged scalar field

pp+ BH +Tg)p, = 0. (3.42)

So, such an equation can be used to describe the “envelope” of the oscillations, if only fermionic
decay routes are available.

Much more interesting is the situation in which the inflaton may decay into bosonic particles.
Such a situation allows a decay by parametric resonance (Traschen and Brandenberger 1990),
which in many models can be broad (Kofman et al. 1994, 1997). This permits an extremely rapid
decay of the inflaton particles, conceivably so rapid that the oscillating phase ends nearly as
soon as it has begun. This dramatically rapid decay has been termed preheating to distinguish
it from the later stage of particle decay and thermalization. The decays can be into a second
bosonic field, or into quanta of the inflaton field itself.

The occupation numbers generated by the parametric resonance typically are huge, so that
the bosons created are far from thermal equilibrium. The large occupation number explains
why preheating does not occur if the only decay routes are to fermions; the Pauli exclusion
principle will prevent further decays once the energy states are filled.
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3.83 Decay and thermalization

Once parametric resonance has created the high occupation number states, or if parametric
resonance is ineffective, the remainder of reheating can proceed according to the standard slow-
decay picture (Abbott et al. 1982; Dolgov and Linde 1982). The bosonic particles should decay,
interact, and finally reach thermal equilibrium. The details will be strongly dependent on the
field theory adopted, which ultimately will determine the temperature at which the Universe can
be said to have reached thermal equilibrium, reentering the standard Hot Big Bang behaviour.
In this final regard, the new theory of reheating does not seem to give much change to the
final answer because the decay products of the resonance quickly become subdominant to
the energy density remaining in the oscillations after the resonance turns off (Kofman et al.
1997).

3.9 Thermal inflation

The idea of thermal inflation (Lyth and Stewart 1995, 1996a) is somewhat tangential to the
rest of the discussion in this book, but has one important consequence concerning the e-folding
relation (3.19), and so, we mention it here.

Thermal inflation is a short period of inflation that may occur in addition to the period
of inflation that we have been discussing. It takes place while a light scalar field ¢ (with, for
example, m ~ 100 GeV), with nonzero vacuum expectation value, is trapped by thermal effects
in the false vacuum at ¢ = 0. The requirement for inflation is 7* < V, and the requirement for
trapping is T 2 m, and so, thermal inflation takes place if Vp >> m* and it occurs in the regime
m<T<S Vol/ 4 Because a o 1 /T during inflation, there are ln(VO1 & /m) e-folds of thermal
inflation, of order 10 for a typical value VOl * ~10° GeV.

Thermal inflation is desirable because it may solve relic abundance problems not solved
by the original inflationary epoch. In particular, it can solve the moduli problem of Section
3.1.3; normal inflation is unable to do this because its energy scale is required to be too high to
generate the right density perturbations. A fairly short period of thermal inflation can produce
an adequate dilution of these unwanted relics.

Because the effective mass during thermal inflation is T 3> H, there is no significant vacuum
fluctuation. Thermal inflation does have a modest impact on large-scale structure though,
because it affects the correspondence between a comoving scale k and the number of e-foldings
before the end of inflation at which it crossed outside the horizon, given by Eq. (3.19). The
derivation of that relation depends on a model of the entire evolution of the Universe from the
end of inflation to the present, and thermal inflation is a serious revision of that evolution. It
stretches scales outside the horizon by a factor exp(Nmermar ), While keeping the energy density
more or less fixed. The net effect is to reduce the prefactor of Eq. (3.19) by Niermat, which is
expected to be about 10. So, with thermal inflation, the scales we observe correspond to a later
stage of inflation than they would have had thermal inflation not occurred.

In general, there may be even more than one period of thermal inflation, driven by a different
scalar field. If there are several periods, then the perturbations that we see could correspond
to quite close to the end of inflation. (Indeed, the fact that we observe perturbations limits
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the amount of thermal inflation that could have occurred.) Except in models of the hybrid
inflationary type discussed extensively in Chapter 8, the closer to the end of inflation that we

are,

the greater should be the deviations from a scale-invariant density perturbation spectrum

because the slow-roll parameters will become large.

Examples

31

3.2

33

3.4

Using the critical density, we can write the Friedmann equation as

H> = H*Q — 52-
a
Assume that the Universe contains only relativistic matter, and that we are allowed to
freely choose an initial density parameter at a very early epoch t = 1074 s,

Choose 2 at that time to be 0.99. Assuming the Universe expands as radiation dominated
whenever the first term in the Friedmann equation dominates, and as curvature dominated
whenever the second term dominates, estimate the age of the Universe when € becomes
smaller than 0.01.

Immediately after the big bang, a ray of light is emitted from point A. It is received at
point B at the time of decoupling [(180 0002, V2p-1 years, from Eq. (2.64)]. Assuming a
critical-density Universe that remained radiation dominated all the way from the big bang
to decoupling, calculate the physical separation of A and B at the time of decoupling. If
decoupling occurs at a redshift of 1100, what is the physical separation of A and B today?

Imagine A and B to be at two locations on the microwave background, located about
6000/ ! Mpc away from us. What would be their apparent angular separation?

The area around point A of this angular separation is the largest region that can have
influenced A before the microwave background radiation from A was emitted. How many
separate such regions are there on the microwave sky?

A Universe that possesses a cosmological constant A but no other matter evolves according
to the Friedmann equation

kA
H 2 —2 - = 0
a 3
Demonstrate that this gives the same solutions for the scale factor as a p = — p perfect

fluid, and relate p to A.

As the Universe expands, the curvature term rapidly becomes unimportant compared
to the density term. Indicate the evolution of the Hubble length in comoving coordinates.
Compare this with the evolution of the Hubble length in a matter-dominated Universe in
comoving coordinates. Name the principal qualitative difference.

A massless free scalar field is one for which the potential is identically zero. Find the
general solutions for homogeneous, spatially flat cosmologies containing such a scalar
field (and no other matter).

Does such a Universe become curvature dominated more or less easily than a matter-
dominated Universe?
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3.6

3.7

3.8

Suppose monopoles form at a temperature of 102 K (equivalently, 3 x 10~*Mp) with a
mass of 1073 Mpy, and that the Universe behaves as in the standard Hot Big Bang. Assume
that annihilations between monopoles and antimonopoles can be neglected, and take the
present-day limit on monopoles to be Qo < 1076 (this is known as the Parker bound; see,
e.g., Kolb and Turner 1990), where Q05 indicates the fraction of the total energy density
residing in monopoles. Calculate an upper bound on the number of monopoles per horizon
volume at formation, assuming g, ~ 100 at that time and that monopole annihilation is
negligible.

Suppose that monopoles form with a density of order 1 per horizon volume. If exponen-
tial inflation occurs after the monopoles have formed, how many e-foldings of inflation are
required to satisfy the Parker bound as stated. Compare this with the number of e-foldings
required to solve the horizon problem and briefly explain the origin of the difference.
Demonstrate that the two conditions in Eq. (3.9) are necessary conditions for the slow-roll
approximation to be valid.

Consider V = A¢*, where A is the self-coupling. Assume that the field rolls toward ¢ =0
from the positive side. Calculate the value of ¢ where each of the slow-roll conditions in
Eq. (3.9) first break down. Do they break down at the same place?

Assuming that inflation ends when € = 1, calculate the number of e-foldings of inflation
that occur for an initial value ¢, using Eq. (3.17).

Demonstrate that the slow-roll solutions with ¢ = ¢; and a = q; at t = t; are

/325, M2
¢ =diexp | — —61)l(t_ti) ,

2 2

: 64\ M.
¢1 ; 1— exp | — Pl
8M2

a = a;j exp

Use the solution for ¢ to calculate the time that inflation ends. Demonstrate that the
number of e-foldings calculated using the solution for a is the same as that which you
calculated above.

Expand the solution for a at small t — 7, to demonstrate that the inflation is approximately
exponential at the initial stage. Calculate the time constant « [from a ~ exp(«t)] and
demonstrate that it equals the (slow-roll) Hubble parameter during inflation.

For the potential V(¢) = m?¢?/2, calculate the ratio of the effective pressure P, to the
energy density py sixty e-foldings before the end of inflation.



4 Simplest model for the origin
of structure I

4.1 Introduction

Thus far, we have seen how inflation can generate a flat and homogeneous Universe, from a
wide range of initial conditions, through the classical evolution of a Universe dominated by the
inflaton field. The true merit of inflation, however, is that it provides a theory of inhomogeneities
in the Universe, which may explain the observed structures. These inhomogeneities arise from
the quantum fluctuations in the inflaton field about its vacuum state, in other words, by the
vacuum fluctuation.

The vacuum fluctuation generates a primeval density perturbation, of the type that cosmol-
ogists call Gaussian and adiabatic, and whose spectral index is close to 1. Such a primeval
perturbation was regarded, even before the advent of inflation, as a viable candidate for the
origin of large-scale structure and the then-unobserved cosmic microwave background (cmb)
anisotropy (Peebles 1980). To understand the evolution of the primeval perturbation to the
present, we need to know the nature and amount of the nonbaryonic dark matter, as well as
the value of the cosmological constant. The simplest possibility is to have zero cosmological
constant, and cold nonbaryonic dark matter giving critical density. The result fairly can be said
to be the simplest plausible model for the origin of large-scale structure and the cmb anisotropy.
It is called the cold dark matter (CDM) model (Pecbles 1982; Blumenthal et al. 1984; Davis
et al. 1985, 1992a).

In this chapter and the next, we study the simplest model, before describing some possible
extensions of it in Chapter 6. At this stage, we pay little attention to the inflationary origin of
the primeval density perturbation, largely reserving that topic for Chapters 7 and 8. Instead, we
explain in some detail what is meant by a Gaussian, adiabatic primeval density perturbation
with a spectral index close to 1. Then, we go on to give a compact account of the theory of
the subsequent evolution of the perturbations and, toward the end of Chapter 5, a very brief
comparison with observation.

Regarding the inflationary origin, we content ourselves at this stage with listing the features
of inflation that give rise to the simplest model:

(1) While cosmologically interesting scales are leaving the horizon, there is slow-roll
inflation. The inflaton field on those scales starts out in the vacuum state (no inflaton
particles with the corresponding momenta), and its vacuum fluctuation has negligible
interaction with itself and other fields.
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This leads to a Gaussian adiabatic density perturbation, with a spectral index that is
close to 1.

(2) The inflaton field has only one component.
This ensures that the perturbation to the spatial curvature is constant while outside the
horizon, leading to standard predictions for the spectrum and the spectral index.

(3) The vacuum fluctuation of fields other than the inflaton has no significant effect after
inflation.
This implies that the adiabatic density perturbation is not accompanied by an isocur-
vature density perturbation. ’

(4) The gravitational waves generated as a vacuum fluctuation have a negligible effect on
the cmb anisotropy.

(5) The nonbaryonic dark matter is cold, the Universe has critical density, and there is no
cosmological constant.
This restates our assumptions about the Universe after inflation, which fix the evolution
of the perturbations once Hy and 2, are specified.

Nature may or may not have chosen the simplest model, and indeed, as we see later in this
book, there is quite a lot of evidence from observation that at least the last assumption cannot
be quite right. It appears that either the dark matter is not purely cold or the Universe has a
subcritical matter density (most likely with, but possibly without, a cosmological constant).
These possibilities are considered in detail in Chapter 6, as is the possible relaxing of the other
assumptions.

42  Sequence of events

Because some of the calculations are quite long, we begin with an overview of the sequence of
events. At this stage, the main results are stated, without any justification except in the simplest
cases. The next four chapters put the flesh on this skeletal description.

421 Vacuum fluctuation

During inflation, classical physics predicts that the inflaton field ¢ becomes homogeneous and
isotropic on scales well inside the horizon. However, we live in a quantum Universe, and at
the quantum level, there remains the vacuum fluctuation 8¢. It is useful to make a Fourier
expansion in a comoving box with sides of comoving length L (physical length aL):

8p(x, 1) =D du(1)e™*. “.1)
k

As usual, x is related to the physical position r by r = a(7)x, and so, the physical wavenumber
is k/a. The possible values of k form a cubic lattice, with spacing

_271

Ak = 4.2)
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Carrying out the expansion in a box imposes an artificial periodicity, but this will not matter
as long as the box is much larger than any scal