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Preface

In 1997, contrary to the ruling paradigm which was that of a dark matter
filled, decelerating universe, my work pointed to a dark energy driven ac-
celerating universe with a small cosmological constant. Moreover, the many
supposedly accidental Large Number relations in cosmology, including the
mysterious Weinberg formula were now deduced from the theory. Observa-
tional confirmation for this scenario came in 1998, while dark energy itself was
finally reconfirmed in 2003, thanks to the Wilkinson Microwave Anisotropy
Probe and the Sloan Digital Sky Survey.
The 1997, and subsequent work was the consequence of mainly three consid-
erations: dark energy or the well known Zero Point Field, fuzzy spacetime
and fluctuations. Indeed String Theory and Quantum Gravity approaches
have had to discard the smooth spacetime of General Relativity and Quan-
tum Field Theory, in a quest for a unified description of these two pillars of
twentieth century physics.
This book is the result of some seventy five papers published in international
journals, and partly an earlier book, ”The Chaotic Universe: From the Planck
to the Hubble Scale” (Nova Science, New York, 2001), as also several lectures
delivered in Universities and institutes in the United States, Canada and Eu-
rope. It describes how, in a simple and somewhat conventional framework, an
underpinning of Planck scale oscillators in the ubiquitous Zero Point Field or
dark energy leads to a unified description of phenomena involving elementary
particles and the cosmos. In particular, apart from the cosmology mentioned
above, these considerations lead to a unified description of all interactions,
including gravitation, though in an extended gauge field treatment. Further-
more, it brings out the character of gravitation as being quite different from
other interactions. It is distributional in nature, over all elementary particles
in the universe, rather than being a microphysical interaction in the sense
of electromagnetism. This incidentally resolves a paradox pointed out years
ago by Steven Weinberg, and which has been since overlooked. Pleasingly we
recover conventional theory in a suitable limit - when the ”quantum of area”
is neglected, infact.
Chapter 1 gives a flavour of the considerations that lead to the above model.
Chapters 2,3 and 4 summarize very briefly the standard models and other
approaches like Quantum Superstring Theory and Loop Quantum Gravity.
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X Preface

Chapters 5 to 8 discuss the above scenario in detail while Chapter 9 deduces
on the basis of dynamics, a simple formula which gives the masses of all
known elementary particles with a maximum error of about three percent.
Finally Chapter 10 describes some further experimental and observational
consequences. These include a new short range force rather like the postu-
lated B3 force, the anomalous accelerations of the Pioneer spacecrafts and
tests for detecting violations of Lorentz symmetry, planned for studies of Ul-
tra High Energy Cosmic Rays. The treatment in the book makes it accessible
to Graduate students in physics and Junior and Senior Researchers in High
Energy Physics and Cosmology.
I am thankful to Professor G.’t Hooft and the Late Professor Ilya Prigogine
for valuable discussions.

B.M. BIRLA SCIENCE CENTRE, HYDERABAD, INDIA,
DECEMBER 2004 B.G. SIDHARTH



1 THE UNIFICATION PARADIGM

”....the aim is to see complete nature as different aspects of one set of
phenomena...”

R.P. Feynman

1.1 Introduction

If we look back at prehistory, we find bewildered man assigning to different
natural phenomena, different controlling powers or deities. But gradually, we
could discern underlying common denominators. Over the millennia man’s
quest for an understanding of the universe has been to perceive disparate
phenomena in terms of a minimal set of simple principles. Today looking back
we can see the logic of Occam’s razor (literally, “A satisfactory proposition
should contain no unnecessary complications”), or an economy of hypothesis–
a far cry from prehistoric times.
In the words of F.J. Dyson[1], ”.... the very greatest scientists in each dis-
cipline are unifiers. This is especially true in Physics. Newton and Einstein
were supreme as unifiers. The great triumphs of Physics have been triumphs
of unification. We almost take it for granted that the road of progress in
Physics will be a wider and wider unification...”.
Sir Isaac Newton was the first great unifier. He discovered the Universal Law
of Gravitation: The force which kept the moon going round the earth, or the
earth round the sun was also the force which kept binary stars going around
each other and so on. All this was basically the same force of gravitation
which brought apples down from a tree. This apart his Laws of Motion were
also universal.
In the nineteenth century the work of Faraday, Ampere and others showed
the close connection between the apparently totally dissimilar forces of elec-
tricity and magnetism. It was Maxwell who unified electricity not just with
magnetism but with optics as well[2].
There was another great unification in the nineteenth century: Thermody-
namics linked the study of heat to the kinetic theory of gases[3].
In the early part of the twentieth century Einstein fused space and time,
giving them an inseparable identity, the Minkowski spacetime[4]. He went on

1



2 1 THE UNIFICATION PARADIGM

to unify space-time with gravitation in his General Theory of Relativity[5].
However the unification of electromagnetism and gravitation has eluded sev-
eral generations of physicists, Einstein included [6].
Meanwhile, thanks to the work of De Broglie and others, the newly born
Quantum Theory unified the two apparently irreconcilable concepts of New-
ton’s ”particles” and Huygen’s waves[7].
Yet another unification in this century, which often is not recognised as such
is the fusion of Quantum Mechanics and Special Relativity by Dirac, through
his celebrated equation of the electron[7].
Another unification took place in the seventies due to the work of Salam,
Weinberg, Glashow and others– the unification of electromagnetism with the
weak forces. This has given a new impetus to attempts for unifying all inter-
actions, gravitation included.
The weak force is one of two forces, the other being the strong force, dis-
covered during the twentieth century itself. Earlier studies and work revealed
that there seemed to be three basic particles in the Universe, the protons, the
neutrons and the electrons. While the proton and the electron interact via the
electromagnetic force, in the absence of this force the proton and the neutron
appear to be a pair or a doublet. However the proton and the neutral neutron
interact via ”strong forces”, forces which are about ten times stronger than
the electromagnetic but have a much shorter range of just about 10−13cms.
These are the forces which bind, for example, the protons in the nucleus.
The existence of the neutrino was postulated by Pauli in 1930 to explain the
decay of the neutron, and it was discovered by Reines and Cowan in 1955.
The weak force which is some 10−13 times the strength of the electromag-
netic force is associated with neutrino type particles and has an even shorter
range, 10−16cms. The neutrino itself has turned out to be one of the most
enigmatic of particles, with peculiar characteristics, the most important of
which is its handedness. This handedness property appears to be crucial for
weak forces.
Later work revealed that while particles like the electron and neutrino, namely
the leptons may be ”truly” elementary, particles like the protons may be
composite, infact made up of still smaller objects called quarks – six in all[8].
Today it is believed that the quarks interact via the strong forces.
All these “material” particles are Fermions, with half integral spin. Forces or
interactions while originating in Fermions, are mediated by messengers like
photons which are Bosons, with integral spin, spin 1 infact. This is crucial,
for, now there is the formalism of gauge theory which can describe all these
interactions.
In this sense gravitation is not a gauge force. It is supposedly mediated by
particles of spin 2.
To picturize the above let us consider the interaction between a proton and
an electron. A proton could be imagined to emit a photon which is then ab-
sorbed by the electron. These studies, in the late forties and fifties culminated
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in the highly successful theory of Quantum Electro Dynamics or QED.
Instead of a single mediating particle we could think of multiplets, all hav-
ing equal masses. With group theoretical inputs, one could shortlist, sin-
glets with one particle like the photon, triplets, octets and so on as possible
candidates[8].
Motivated by the analogy of electromagnetism mediated by the spin one
photon, it was realized in the fifties that the W+ and W− Bosons could be
possible candidates for the mediation of the weak force. However there had
to be one more messenger so that there would be the allowable triplet. It was
suggested by Ward and Salam that the third candidate could be the photon
itself, which would then provide not only a description of the weak force but
would also unify it with electromagnetism. However while the W particles
were massive, the photon was massless so that they could not form a triplet.
A heavy photon or Z0 was then postulated to make up a triplet, while the
photon was also used for the purpose of unification, and moreover a mixing
of Z0 and the photon was required for what has been called renormalization,
that is the removal of infinities.
The question was how could the photon be massless while the W and Z par-
ticles would be massive? It was suggested that this could be achieved through
the spontaneous breaking of symmetry[8]. For example a bar magnet when
heated, looses its magnetism. In effect the North and South pole symmetry
is broken. Conversely, when the magnet cools down, polarity or asymmetry
is restored spontaneously. This infact is a phase transition from symmetry to
asymmetry.
In our case, before the spontaneous breaking of symmetry or the phase tran-
sition, the W s, Zs, and the photons would all be massless. After the phase
transition, while the photons remain mass less, the others would acquire mass.
This phase transition would occur at temperatures ∼ 1015◦

Centigrade. At
higher temperatures there would be a single electroweak force. As the tem-
perature falls to the above level electromagnetism and weak forces would
separate out.
The next problem was, the inclusion of the strong forces. Clearly the direction
to proceed appeared to be to identify the gauge character of the strong force–
mediated by spin one particles, the gluons. (The approach differed from an
earlier version of strong interaction in terms of Yukawa’s pions.) This force
binds the different quarks to produce the different elementary particles, other
than the leptons. This is the standard model. It must be mentioned that in
the standard model, the neutrino is a massless particle.
However we have not yet conclusively achieved a unification of the electroweak
force and the strong force. We proceed by the analogy of the electroweak uni-
fication to obtain a new gauge force that has been called by Jogesh Pati and
Abdus Salam as the electro nuclear force, or in a similar scheme the Grand
Unified Force by Glashow and Georgi. It must be mentioned that one of the
predictions is that the proton would decay with a life time of about 1032
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years, very much more than the age of the Universe itself. However some
believe that we are near a situation where this should be observable[9]. This
”unifying” theory still relies on eighteen arbitrary parameters, apart from
being plagued by problems like the ”hierarchy problem”, which arises from
the widely different energies and therefore masses associated with the vari-
ous interactions, the as yet non-existent monopole, infinities or divergences
(which have to be eliminated by renormalization), and so on[10]-[12].
The recent super Kamiokande determination of neutrino mass is the first
evidence of what may be called, Physics beyond the standard model. Inter-
estingly in this theory we would also require a right handed neutrino in this
case.
Meanwhile extended particles had come into vogue from the seventies, with
string theory[13]-[20]. Starting off with objects of the size of the Compton
wavelength, the theory of superstrings now deals with the Planck length of
about 10−33cms.
We have already noted that all interactions except gravitation which is me-
diated by spin 2 gravitons are generalizations of the electromagnetic gauge
theory. String theory combines Special Relativity, and General Relativity -
we need ten, (9+1), dimensions for quantizing strings, and we also get a mass
less particle of spin two which is the mediator of the gravitational force. This
way there is the possibility of unifying all interactions including gravitation.
Further, in the above ten dimensions there are no divergences. This is be-
cause the spatial extension of the string fudges the singularities (or vertices).
However, we require, for verification of the string model, energies ∼ 1018mP ,
as against the presently available 103mP .
Another interesting feature of string theory is duality. There are five differ-
ent solutions (compactifications) leading to the same physical picture. It is
felt that these five theories are but different descriptions of a single, deeper,
and may be more complicated theory.Over the past decade, the so called M-
Theory has superseded Quantum Super String theory, though it is still not
clear what the M stands for. M-Theory works in eleven dimensions.
The exotic dimensions, the Large Number of solutions and the non veri-
fiable nature of the theory are some of the unsatisfactory features of this
development[21], just as the 18 arbitrary parameters the hierarchy of ener-
gies, and the unseen monopoles are some of the unsatisfactory features of the
standard model.
There have been other approaches to unifying gravitation and electromag-
netism [22], including Loop Quantum Gravity: All these approaches differ
from the standard model in that there is no longer a differentiable spacetime
manifold, in which we could go down to arbitrarily small intervals. Rather
there is a cut off at the Planck scale ∼ 10−33cm and 10−42sec. We will be
returning to these matters in Chapters 2 and 3 and thereafter.
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1.2 Inertial Mass

In contrast to the Planck scale, ordinary Quantum Mechanics works at dis-
tances much greater than the Compton wavelength of elementary particles,
roughly 10−12cm. In the domain of Quantum Field Theory, particles are
points, spacetime is a continuum and Special Relativity holds. On the other
hand in Quantum Gravity as mentioned we attempt to deal with phenomena
at distances of the order of the Planck length or 10−33cm. As of now there
has been no successful unification of Quantum Mechanics and General Rela-
tivity or gravitation.
At the Compton scale Quantum Mechanical phenomena like zitterbewegung,
negative energy solutions and luminal velocities come in to play. Veneziano,
one of the founding fathers of string theory, has termed the Compton scale
as a “miracle” [23]. We will briefly indicate a scenario in which, we can trace
the origin of inertial mass, gravitation, and even QCD type interactions. This
would set the stage for considerations which we will encounter from Chapter
5 onwards.
We start from a Quantum Mechanical point of view on the lines elaborated
in ref. [24]. Let us consider an equation deduced by Feynman[25] in a simple
way,

ıh̄̄
∂C(x)

∂t
=

−h̄̄2

2m′
∂2C(x)

∂x2
(1.1)

where C(x) ≡ |ψ(x) > is the probability amplitude for the particle to be at
the point x at some given moment of time.
To deduce equation (1.1) we follow the development of[25] and define a com-
plete set of base states by the subscript ı and U(t2, t1) the time elapse
operator that denotes the passage of time between instants t1 and t2, t2
greater than t1. We denote by, CıCC (t) ≡< ı|ψ(t) >, the amplitude for the state
|ψ(t) > to be in the state |ı > at time t, and

< ı|U |j >≡ UıjUU ,UıjUU (t + ∆t, t) ≡ δıj − ı

h̄̄
HıjHH (t)∆t.

We can now deduce from the super position of states principle that,

CıCC (t + ∆t) =
∑

j

[δıj − ı

h̄̄
HıjHH (t)∆t]CjC (t)

and finally, in the limit,

ıh̄̄
dCıCC (t)

dt
=

∑
j

HıjHH (t)CjC (t) (1.2)

where the matrix HıjHH (t) is identified with the Hamiltonian operator. (To fa-
cilitate comparison we stick to the notation and development as given in[25]).
Before proceeding to derive the Schrodinger equation, we apply equation (1.2)¨
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to the simple case of a two state system (ı, j = 1, 2) (cf.ref.[25]). For a two
state system we have

ıh̄̄
dC1

dt
= H11C1 + H12C2CC

ıh̄̄
dC2

dt
= H21HH C1 + H22HH C2CC

leading to two stationary states of energies E − A and E + A, where
E ≡ H11 = H22HH ,A = H12 = H21HH . We can choose our zero of energy such that
E = 2A. Indeed as has been pointed out by Feynman, when this considera-
tion is applied to the hydrogen molecular ion, the fact that the electron has
amplitudes C1 and C2CC of being with either of the hydrogen atoms, manifests
itself as an attractive force which binds the ion together, with an energy of
the order of magnitude A = H12.
To proceed, we consider in (1.2), the ı to be the space points xı and we denote
C(xn) ≡ CnCC , the probability amplitude for the particle to be at this space
point. Further let xn+1 − xn = b. Then considering only the point xn and its
neighbours xn±1, the equation (1.2) goes over into

ıh̄̄
∂C(xn)

∂t
= EC(xn) − AC(xn − b) − AC(xn + b) (1.3)

In the limit b → 0, with our choice of the arbitrary zero of energy, (1.3)
goes over into equation (1.1) where we have now dropped the subscript dis-
tinguishing the space point, and m′ = h̄̄2/2Ab2. (Shortly, we will see that
infact, b does not → 0, but rather b → b̄ > 0.)
We now observe that while equation (1.1) resembles the free Schrödinger¨
equation, it is infact not so, because as has been pointed out by Feynman, m′

is not really the inertial mass, but an ”effective mass” that emerges from the
probability amplitude for the particle to be found at a neighbouring point.
The Schrodinger equation can be obtained from (1.1) if it can be shown that¨
m′ can somehow be replaced by m. This is what we propose to do.
To start with let us suppose that the particle has no mass other than the ef-
fective mass m′, so that we can treat equation (1.1) as the Schrödinger type¨
equation for such a particle which has only amplitudes to be at neighbouring
points.
Let us now go one step further and suppose that the particle acquires non zero
probability amplitudes to be present non locally at other than neighbouring
points. We can then no longer work with equations (1.3) and (1.1). We will
have to use the full equation (1.2) which explicitly exhibits this possibility.
We rewrite equation (1.2) as

ıh̄̄
dCıCC (t)

dt
= HııHH CıCC (t) + Hı,ıHH −1CıCC −1(t) + Hı,ıHH +1CıCC +1(t)

+
∑

j

Hı,ıHH +j(t)CjC (t), (j = ±2,±3 · · · , )

or as in the transition of equation (1.3) to equation (1.1),
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ıh̄̄
∂C(x)

∂t
=

−h̄̄2

2m′
∂2C(x)

∂x2
+

∫
H(x, x′)C(x′)dx′ (1.4)

where we have replaced HıjHH by H(x, x′) and the points xı are in the limit
taken for the time being to be a continuum. This is as in the well known case
of the non-local Schrodinger equation for a non-local potential[26] but for a¨
particle having only an effective mass.
The matrix H(x, x′) gives the probability amplitude for the particle at x to
be found at x′, that is,

H(x, x′) =< ψ(x′)|ψ(x) > (1.5)

where as is usual we write C(x) ≡ ψ(x)(≡ |ψ(x) >, the state of a particle at
the point x).
Usually the amplitude H(x, x′) is non-zero only for neighbouring points x
and x′, that is, H(x, x′) = f(x)δ(x − x′). But if H(x, x′) is not of this form,
then there is a non-zero amplitude for the particle to ”jump” to an other
than neighbouring point. In this case H(x, x′) may be described as a non
local amplitude. Indeed such non-local amplitudes are implicit in the Dirac
equation also and this will be commented on later.
We now give a quick derivation of how the inertial mass emerges from equa-
tion (1.4). The non local Schrödinger equation (1.4), given only the effective¨
mass m′, can be written, with the help of (1.5), as,

ıh̄̄
∂ψ

∂t
=

−h̄̄2

2m′
∂2ψ

∂x2
+

∫
ψ∗(x′)ψ(x)ψ(x′)U(x′)dx′, (1.6)

where,
i)U(x) = 1 for |x| < R, R arbitrarily large and also U(x) falls off rapidly as
|x| → ∞;U(x) has been introduced merely to ensure the convergence of the
integral; and
ii)H(x, x′) =< ψ(x′)ψ(x) >= ψ∗(x′)ψ(x).
(1.6) is an integro-differential equation of degree three.
The presence of the, what at first sight may seem troublesome, non-linear
and non-local term, viz., the last term on the right side of (1.6) will be
satisfactorily explained in the sequel.
In (1.6),in the first approximation ψ(x) can be taken to be the solution of
the Schrodinger like equation (1.1), viz.,¨

ıh̄̄
∂ψ

∂t
=

−h̄̄2

2m′
∂2ψ

∂x2
(1.7)

In effect, we linearize (1.6), so that we get,

ıh̄̄
∂ψ

∂t
= [− h̄̄2

2m′
∂2

∂x2
+ m0]ψ (1.8)

where,
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m0 =
∫

ψ∗(x′)ψ(x′)U(x′)dx′ (1.9)

This is the crux of the matter–the origin of the inertial mass in non local,
what may be called, self-interaction amplitudes. To proceed we observe that
in operator language, (1.8) becomes,

H̄ =
p2

2m′ + m0 (1.10)

where H̄ is the Hamiltonian operator, p the momentum operator and where,
what can now be anticipated as a rest mass like term m0, appears for a
particle assumed not to have any rest mass in the absence of the non-local
amplitude term in (1.6). Also we have replaced the Hamiltonian matrix H by
H̄ to stress that, to start with, in (1.4) and (1.6), the particle has no inertial
mass. To facilitate comparison with the usual theory, we next multiply both
sides of (1.10) by the constant m′

m , where,

m = (m0m
′)

1
2 /c,

c being the velocity of light. (The reason for the appearance of the velocity
of light, c can be seen below (cf.equation (1.12)) and the constant could be
absorbed into the state vector, whose direction is all that matters. We then
get,

Ĥ =
p2

2m
+ mc2 (1.11)

The physical meaning of (1.11) is now clear. In an expansion of the classical
relativistic expression for energy,

E = (p2c2 + m2c4)1/2

as is well known, if we keep terms up to the order (p/mc)2, we get,

E =
p2

2m
+ mc2 (1.12)

We can now easily identify m in (1.11) with the rest mass on comparing this
equation with (1.12). (Interestingly it is not accidental that equation (1.11)
corresponds to the approximation (1.12) as will be seen below). If further,
we denote

H = Ĥ − mc2,

where H can be easily identified with the usual kinetic energy operator (or en-
ergy operator in non-relativistic theory, remembering that we are considering
a free particle only), (1.11) becomes

H =
p2

2m
(1.13)
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In a strictly non relativistic context, where the rest energy of the particle
is not considered, the Hamiltonian is given by (1.13); otherwise, it is given
approximately by (1.11).
We get from (1.6) or (1.11), the Schrödinger equation,¨

ıh̄̄
∂ψ

∂t
= − h̄̄2

2m

∂2ψ

∂x2
(1.14)

Interestingly, in the derivation of the Schrodinger equation (1.14), or the¨
Hamiltonian (1.13), we have not used Newtonian mechanics! In our purely
Quantum Mechanical approach based on probability amplitudes, if we use
energy and momentum eigen states, then these operators become numbers
in equations like (1.13). (This is the reverse of the usual procedure.) In effect
we have deduced Newtonian mechanics.
All these considerations can be considered in a postulative development [27]
and also generalized in a simple way to three dimensions, but there is no new
physical insight.
The physical origin of the rest mass is clear from equation (1.6): in the two
state hydrogen molecular ion case referred to earlier, it was the amplitude for
the single electron to be with one hydrogen atom or the other which showed
up as a binding energy. Similarly the amplitude of a particle to be at x or x′

viz. the second term on the right side of equation (1.6) manifests itself as an
(attractive) energy, which may be called the mass energy of the particle or
the self energy or the energy of self interaction. This can be seen to be the
particle’s inertial mass.
We now come to this non local term in equation (1.6), the term which gives
the inertial mass. Non locality implies superluminal velocities and the break-
down of causality which is not permissible in general. However without any
contradiction to the theory it is well known that Quantum Mechanics al-
lows such non locality, owing to the Uncertainty Principle [28], within the
Compton wavelength of a particle. So there is no contradiction if the non
local integral in (1.6) is taken within the region of the particle’s Compton
wavelength, that is, the inertial mass is a result of non local processes within
the Compton wavelength of the particle.
Indeed the usual Dirac equation also has a non local character: The operator
cα.p+βmc2 is equivalent to and replaces the non-local square-root operator,
(−h̄̄2∇2 + m2c4)1/2. Here also, the non-local effects in the form of negative
energies or zitterbewegung are encountered - again within the Compton wave-
length region (cf.ref.[29, 7]). We will see in Chapters 5 and 6, in particular,
that the Compton scale in any case is ill defined in the sense that spacetime
points in it are ill defined - this arises out of a noncommutative geometry.
We shall also see from an alternative point of view how the inertial mass or
energy emerges from within this scale, as also characteristics like spin.
In the light of the preceding considerations, we can derive the Schrödinger¨
equation from an alternative angle: It appears that the ”point” particle is re-
ally spread over the non-locality region ∼ b̄ = h̄̄

mc , the Compton wavelength.
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Further, the energy of the particle i.e., the energy tied up within this region
viz., 2A is the inertial mass energy mc2. We could now, speak of the ampli-
tude for the particle at x to be found (locally) at a neighbouring point x + b,
except that in the limit, b → b̄ (and not as earlier,0). The effective mass m′

in equation (1.1) is then given by,

m′ =
h̄̄2

2Ab2
= m,

that is the mass itself!
So, equation (1.1) can be interpreted as the Schrödinger equation with this¨
input.
It is worth re-emphasizing that it is the force of binding of non-local posi-
tions within the Compton wavelength, rather like the Hydrogen molecular
ion binding, that manifests itself as inertial mass.
Finally we briefly comment on the appearance of the extra mass energy term
in equations like (1.4), (1.6), (1.10), (1.11) or (1.12)[30, 31].
The Schrodinger equation is really the limiting case of the Dirac equation¨
(which, as we will see in Chapter 5 is primary) in which process an inessential
phase factor is dropped. Another way of looking at this is that the constant
potential moc

2 does not affect the dynamics. That is the reason why the
Schrodinger equation is not Galilean invariant, as a non relativistic theory¨
should be, and infact exhibits the Sagnac effect, which a strictly Galilean
invariant theory should not(Cf.ref.[32] for details).

1.3 Enter General Relativity

The fact that, as we saw in section 2, the mass generating non-local am-
plitudes are confined to a region of width ∼ h̄̄

mc the Compton wavelength,
suggests that the particle could be a Black Hole, because in this case also,
there is a width, the horizon, inside which such unphysical phenomena ap-
pear. The simplest possibility that a particle could be a Schwarzchild Black
Hole had been examined earlier by Markov, Motz and others[33]-[43]. This
leads to a high particle mass, the Planck mass of 10−5gm, with the Planck
size ∼ 10−33cms [45]. Infact we can verify that in this case, the relation

R ∼ 2GM

c2
, (1.15)

holds. Equation (1.15) gives, the Schwarzchild radius[46]. However, Quantum
Mechanical properties, like spin, do not appear. Interestingly, Rosen[47] has
shown that such a Planck particle, a mini Universe, can be deduced from the
Schrodinger equation with the gravitational potential. Other authors have¨
considered charged or spinning and even charged spinning Black Holes [48]-
[58].
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Let us approach the problem from a different angle. We consider a charged
Dirac (spin half) particle. If we treat this as a spinning Black Hole, then a
logical candidate would be the Kerr-Newman Black Hole, which is a charged
and spinning version of the Schwarzchild black hole. But there is an imme-
diate problem:The horizon of the Kerr-Newman Black Hole becomes in this
case, complex[59, 46],

r+ =
GM

c2
+ ıb,b ≡ (

GQ2

c4
+ a2 − G2M2

c4
)1/2 (1.16)

where G is the gravitational constant, M the mass and a ≡ L/Mc,L be-
ing the angular momentum. That is, we have a naked singularity apparently
contradicting the cosmic censorship conjecture. However, in the Quantum
Mechanical domain, (1.16) can be seen to be meaningful.
This is because the position coordinate for a Dirac particle is itself complex.
The real part is the usual position while there is an imaginary part arising
from zitterbewegung. Interestingly, in both cases, the imaginary part is of the
order of h̄̄

mc , the Compton wavelength, and leads to an immediate identifica-
tion of these two equations. It is remarkable that (1.16) is a purely classical
relation while the Dirac coordinate is purely Quantum Mechanical. We will
see the significance of this later.
We must remember that our physical measurements are gross - they are re-
ally measurements averaged over a width of the order h̄̄

mc . Similarly, time
measurements are imprecise to the tune ∼ h̄̄

mc2 . This will be a recurrent
theme in this book. Very precise measurements if possible, would imply that
all Dirac particles would have the velocity of light, or in the Quantum Field
Theory atleast of Fermions, would lead to divergences. (This is closely related
to zitterbewegung and the non-Hermiticity of position operators in relativis-
tic theory [60]). Physics begins after an averaging over the above unphysical
space-time intervals. In the process as is known (cf.ref. [60]), the imaginary
or non-Hermitian part of the Dirac position operator disappears. That is the
naked singularity is shielded by the Quantum Mechanical zitterbewegung
censor if, as Dirac originally implied, we renounce spacetime points [7].
It is relevant to mention here that one of the conceptual issues that has dogged
Physicists is the question whether spacetime is an apriori background con-
tainer, a purely geometrical structure in which matter and interaction have
their play or whether it is the content that defines spacetime. The former was
the Newtonian view while Leibnitz was more in tune with the latter picture.
Einstein with his Special Relativity and then General Relativity made space-
time more physical - the geometry depended on the contents. In Quantum
Theory, the concept of a spacetime point, which is at the heart of a contin-
uum picture, loses its legitimacy due to Heisenberg’s Uncertainty Principle
- such points imply infinite momenta and energies. Even so, spacetime has
continued to be considered a differentiable manifold, for much of twentieth
century physics. Indeed Quantum Field Theory takes the Lorentzian under-
pinning for granted.



12 1 THE UNIFICATION PARADIGM

The picture becomes different, if we consider Planck scale phenomena whether
in Quantum Gravity or String Theory ([37]-[45]). Here, we have to consider
spacetime as resulting from fluctuating subconstituents at the Planck scale.
As Wheeler[46] put it, “The Uncertainty Principle thus deprives one of any
way whatsoever to predict, or even to give meaning to, ’the deterministic clas-
sical history of space evolving in time.’ No prediction of spacetime, therefore
no meaning for spacetime, is the verdict of the quantum principle. That ob-
ject which is central to all of classical General Relativity, the four-dimensional
spacetime geometry, simply does not exist, except in a classical approxima-
tion.”
It is in this context that the above averages over minimum intervals or studies
of a discrete space-time substructure become important. Already, the limi-
tations of the concepts of rigid scales or space-time points as indicated, are
coming to the force (Cf.ref.[24]).
We will encounter this aspect later in Chapter 5 where we will discuss “fuzzy”
spacetime and complex coordinates more fully.
To continue, we treat for the moment a Dirac particle as a Kerr-Newman
Black Hole of mass m, charge e and spin h̄̄

2 . The gravitational and electro-
magnetic fields at a distance are given by (cf.ref.[46],[61]-[63]),

Φ(r) = −Gm

r
+ 0(

1
r3

)Er̂ =
e

r2
+ 0(

1
r3

), Eθ̂ = 0(
1
r4

), Eφ̂ = 0,

Br̂ =
2ea

r3
cosθ + 0(

1
r4

), Bθ̂ =
easinθ

r3
+ 0(

1
r4

), Bφ̂ = 0, (1.17)

exactly as required. The remarkable fact has been well known that the Kerr-
Newman metric (1.17) also exhibits the electron’s purely Quantum Mechani-
cal anomalous gyromagnetic ratio g = 2. Again (1.17) is purely classical and
the g value purely Quantum Mechanical.
We now make some observations:
1. In the context of the Compton scale extension, the fact that we get the
gravitational potential m

r in equation (1.17) again confirms that mass comes
from the Compton wavelength region.
2. In ordinary Quantum Mechanics, ψ being the wave function, ψψ∗ is pro-
portional to the probability density. On the other hand, we saw that the
mass density is produced by the non-linear, non-local amplitude ψψ∗ in the
Compton wavelength region. More specifically it is known that it is χ, the
negative energy part of the Dirac four spinor(

χ
Θ

)

(which dominates in this region), that is relevant [29]. That is, ρ being the
material density,

ραχχ∗ (1.18)

For the two component neutrino in contrast, the divide between the positive
and negative energy solutions does not exist, that is, χ = 0, and the neutrinos
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are massless.
It was shown in [64, 65], how gravitation can emerge from the Schrödinger¨
equation self-consistently. Again, it is the identification of the material density
in (1.18) which gives substance to that result. We will return to these aspects
in Chapters 5, 6 and 8.
3. It is interesting to note that the above model of a particle could give a
rationale for the left handedness of the neutrino. In the case of the neutrino,
as the mass is vanishingly small, the Compton wavelength tends to infinity
or turns out to be very large. On the other hand we encounter the negative
energy solutions within this region. That is we encounter ”negative energy”
neutrinos only. The equation for a negative energy neutrino is (cf. ref.[60]).

(−po)v(p) = +σ.pv(p)

This is the equation for a left handed neutrino in the physical world of positive
energy solutions. Infact it is known that[66] we need the Dirac 4 spinors only
to preserve space reflection symmetry- working only with 2 spinors would
violate this symmetry. This is the case at the Compton wavelength, where
it is the negative energy 2 spinors of the Dirac 4 spinor which predominate
[29]. So neutrinos show handedness. In the next Chapter, this will be seen to
be true of quarks also.

1.4 Further Considerations

Ever since Einstein put forward his theory of gravitation in 1915, a problem
that has vexed physicists including Einstein himself is the incorporation of
electromagnetism into the theory of gravitation. Einstein himself said it all in
his Stafford Little Lectures delivered in May 1921 at Princeton University[4],
“... a theory in which the gravitational field and the electromagnetic field do
not enter as logically distinct structures would be much preferable...”
The basic problem is that General Relativity belongs to the domain of classi-
cal physics whereas electromagnetism belongs to the domain of ”elementary
electrically charged particles”, that is Quantum Theory, more specifically the
theory of the electron. And, as J.A. Wheeler[46] put it, ”the most evident
shortcoming of the geometrodynamic model as it stands is this, that it fails to
supply any completely natural place for spin 1

2 in general and for the neutrino
in particular”, while ”it is impossible to accept any description of elementary
particles that does not have a place for spin half.” This apart it should be
remembered that the spacetime we speak of in General Relativity is not only
deterministic, but we also speak in terms of definite points of spacetime. This
is forbidden in Quantum Theory by the Uncertainty Principle. Infact four di-
mensional spacetime exists only as a classical approximation[46].
However, the characterization of an electron as a Kerr-Newman type Quan-
tum Mechanical Black Hole or QMKNBH already gives a clue to a unified
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picture of gravitation and electromagnetism: For example Equation (1.17)
gives both for the electron (Cf.ref. [24] for a more detailed discussion).
It appears that the QMKNBH description applies to electrons and more gen-
erally leptons. Let us now approach the problem from a General Relativistic
point of view. This will also reveal the origin of strong or, QCD type in-
teractions. Taking the cue from the foregoing considerations, we now treat
the particle as a relativistic fluid of ”particlets” (or Ganeshas). Our starting
point is the linearized theory [46]:

gµv = ηµv + hµv, hµv =
∫

4TµvTT (t − |x − x′|,x′)
|x − x′| d3x′ (1.19)

The reason we consider the linearized theory is, that outside the Schwarzchild
radius, as is well known the metric becomes asymptotically flat, and this is
the region of our interest[5].
In (1.19), velocities comparable to the velocity of light c are allowed and
also the stresses T jk and momentum densities T 0j can be comparable to the
energy momentum density T 00. As in ref.[46], we can easily deduce that,
when |x′|

r << 1, where r ≡ |x|, and in a frame with origin at the centre
of mass and at rest with respect to the particle, and in units in which the
gravitational constant G is unity,

m =
∫

T 00d3x (1.20)

Sk =
∫

εklmxlTm0d3x (1.21)

where m is the mass (or approximate mass because of the linear approxima-
tion), and Sk is the angular momentum. We next observe that,

Tµv = ρuµuv (1.22)

If we now work in the Compton wavelength region of the QMKNBH, we have,
while u0 = 1,

|ul| = c (1.23)

(This is the Quantum Mechanical input)
Substitution of (1.22) and (1.23) in (1.21) gives on using the Mean Value
Theorem,

Sk = c < xl >

∫
ρd3x

As < xl >∼ h̄̄
2mc , using (1.20), we get, Sk ≈ h̄̄

2 , as required for a spin half
particle. Infact this relation becomes exact if we treat the QMKNBH as
effectively a rotating shell distribution of radius h/¯̄ 2mc and, keeping in mind
the fact that the interior region is in any case unphysical and is described by
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complex spacetime coordinates.
The gravitational potential can similarly be obtained from (1.19) and (1.20),

Φ = −1
2
(g00 − η00) = −m

r
+ 0(

1
r3

)

As we will see in detail in Chapter 5 the electromagnetic potential is given
by, (Cf. also ref.[24, 67]),

Aµ = hΓ¯̄ µσ
σΓ (1.24)

Using the expression for the Christoffel symbols, we have,

Aσ =
1
2
(ηµv h̄̄µv),σ ,

so that, from (1.19),

A0 = 2
∫

ηµv ∂

∂t
[
TµvTT (t − |x − x′|,x′)

|x − x′| ]d3x′

Remembering that |x− x′| ≈ r for the distant region we are considering, we
have,

A0 ≈ 2
r

∫
ηµv[

∂

∂τ
TµvTT (τ,x′).

d

dt
(t−|x−x′|)]d3x′ ≈ 2

r

∫
ηµv d

dτ
TµvTT .(1+c)d3x′,

or finally

A0 ≈ 2c

r

∫
ηµv d

dτ
TµvTT d3x′ (1.25)

as c >> 1, and where we have used the fact that in the Compton wavelength
region, |uv| = c.
It has already been observed that QMKNBH can be treated as a rotating
shell distribution with radius R ≡ h̄̄

2mc . So we have,

|duv

dt
| = |uv|ω (1.26)

where ω, the angular velocity is given by,

ω =
|uv|
R

=
2mc2

h̄̄
(1.27)

Interestingly we get the same relation (1.26) in the theory of the Dirac equa-
tion, remembering that in (1.20) and (1.21) the centre of mass is at rest:

ıh̄̄
d

dt
(cαı) = −2mc2(cαı),

where cαı is the velocity operator (cf.ref.[7]). Finally, on using (1.24), (1.26)
and (1.27) in (1.25), we get, displaying G(= 1) explicitly,
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e′e
r

= A0 ∼ hc¯̄ 3

r

∫
ρωd3x′ ∼ (Gmc3)

mc2

r
(1.28)

where e′ = 1esu corresponds to the charge n = 1 and e is the test charge.
Because of the approximations taken in deducing (1.28), and the changeover
of units, a dimensional constant (L

T )5 has to be multiplied on the left side,
which then becomes,(in units, c = G = 1),

e′e.(dimensional constant) ≈ 1.6 × 10−111cm2

The right side is,
Gm2c5 ≈ 4.5 × 10−111cm2,

in broad agreement with the left side.
Alternatively, using the values of G,m and c in (1.28), in usual units we get,

e ∼ 10−10esu,

which is correct.
Yet another way of looking at (1.28) is, that we get, as e′ = 1esu ∼ 1010,

e2

Gm2
∼ 1040, (1.29)

Equation (1.29) is well known empirically and we will return to it repeatedly
in later Chapters where it will be deduced alternatively. But equation (1.28)
gives the reason for this ”coincidental” relation.
In any case, equations (1.29) and (1.28) show the inter-relation between
e,m, candG.
So far we have been considering distances far from the particle: |x′ − x| >>
|x′|. This is the approximation invoked in a transition from (1.19) to equa-
tions (1.20), (1.21) etc. Let us now see what happens when |x| ∼ |x′|. In this
case, we have from (1.19), expanding in a Taylor series about t,

hµv = 4
∫

TµvTT (t,x′)
|x − x′| d3x′ + (terms independent ofxff ) +

2
∫

d2

dt2
TµvTT (t,x′).|x − x′|d3x′ + 0(|x − x′|2) (1.30)

The first term gives a Coulombic α
r type interaction except that the coefficient

α is of much greater magnitude as compared to the gravitational or electro-
magnetic case, because in this approximation, in an expansion of (1/|x−x′|),
all terms are of comparable order. To proceed further, using (1.26), we have,

d

dt
Tµv = ρuv duµ

dt
+ ρuµ duv

dt
= 2ρuµuvω,

so that,
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d2

dt2
Tµv = 4ρuµuvω2 = 4ω2Tµv

where ω is given by (1.27). Substitution in (1.30) gives,

hµv ≈ −βM

r
+ 8βM(

Mc2

h̄̄
)2.r (1.31)

β being a constant.
This resembles the QCD quark potential[68] to which we will return in the
next Chapter, with both the Coulombic and confining parts. Taking for M the
mass of a typical C quark ∼ 1.8Gev, the ratio of the coefficients of the r term
and the 1

r term as obtained from (1.31) is ∼ 1
h̄̄2 (Gev)2 as in the case of QCD.

In any case these considerations suggest that we can get different interactions
at different distances or scales in a unified picture based on linearized General
Relativity and minimum spacetime scales, which can represent quarks also.
We can further refine this argument (Cf equations (1.25) and (1.28)). Outside
the Compton wavelength, it was shown that

ee′

r
= A0 ≈ 2ch̄̄

r

∫
ηµν d

dτ
TµνTT d3x′ =

2ch̄̄

r

∫
ηıj d

dτ
TıjTT d3x′,

= 2ch̄̄(
mc2

h̄̄
)
∫

ηıj TıjTT

r
d3x′ (1.32)

where e′ is the test charge.
As we approach the Compton wavelength however, we have to use equation
(1.30), which after a division by m, the mass of the particle to be identified
with the quark, and taking h̄̄̄ = 1 = c to correspond to the usual theory, goes
over to, as in equation (1.31),

−α

r
+

βme

l2
r (1.33)

where α ∼ 1 and β ∼ 1
m and me is the electron mass. This is again the QCD

potential with both the Coulombic and confining parts.
We now observe that the usual three dimensionality of space, as pointed out
by Wheeler[46, 69] arises due to the double connectivity or spinorial behav-
iour of Fermions, which takes place outside the Compton wavelength due to
the fact that as we have seen, while it is the negative energy components of
the Dirac four-spinor which dominate inside, it is the positive energy com-
ponents which predominate outside (cf.ref.[70, 71]) for details). Such a three
dimensionality can also be similarly deduced using Penrose’s spin network
theory[72]. The interesting point here is that this three dimensionality is not
apriori. Rather, it arises due to a holistic or Machian or environmental reason
- the presence of other particles around. Interestingly, if we consider the Dirac
equation in two (or one dimension) [73, 74], we encounter handedness and
the absence of an invariant mass - features which in the light of our consider-
ations are expected to arise at the Compton wavelength. As we approach the
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Compton wavelength, we encounter mostly the negative energy components
and the above double connectivity and therefore three dimensionality disap-
pear: For the next simplest choice we have two or less dimensions. Infact, even
in the purely classical case of a collection of relativistic particles, the various
centres of mass form a two dimensional disk [75]. Indeed such a conclusion
has been drawn alternatively at very small scales (cf.[76, 77]). Further recent
experiments with nano tubes already reveal such low dimensional quantum
behaviour[78, 79].
This leads to the following circumstance: We first have to consider two and
one spatial dimensions. We now use the fact that as is well known[80] each
of the TıjTT in (1.32) is given by (1/3)ε, where ε is the energy density. In this
case it follows from (1.32) that the particle would have the charge (2/3)e or
(1/3)e, in two or one dimensions. Incidentally, this provides an explanation
for the remarkable and well known fact that a third of charge appears to be
concentrated in a core of the size of the order of the Compton wavelength[81].
This would also automatically imply that these fractionally charged particles
cannot be observed individually, as they are by their very nature confined
to dimensions of the order of their Compton wavelength. This is expressed
by the confining part of the QCD potential (1.33). We now identify these
confined particles with charge (1/3)e and (2/3)e, with quarks and further
justify this identification, below.
As in reference[70, 82], and as in the standard theory we consider the proton
to be made up of two quarks of charge (2/3)e with an intervening quark of
charge −(1/3)e all confined to a distance l which in the above light is of
the order of the particle’s Compton wavelength. For small displacements r
of the central quark as in[70] we can easily see that the confining part of the
potential is given by

V =
e2

9l2
r (1.34)

Comparing with (1.33) we get,

e2

9l2
∼ 1

m

me

l2
,

whence the quark’s mass is given by

m ∼ 103me (1.35)

as required.
Finally as we encounter predominantly the negative energy two spinor of
the Dirac four spinor at the Compton wavelength, with negative helicity
(cf.ref.[29]), the quarks display handedness which in conventional theory is
due to the small Cabibo angle. So the puzzling, inexplicable features of quarks
[8] turn out to be not so mysterious, after all.
It is interesting to note that just beyond the Compton wavelength, where
we still do not encounter fractional charge or low dimensions, the mass of
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the resulting particle would from (1.34) and (1.35) be given by ∼ 137me

corresponding to the pion: In fact we have to consider two such Fermions
which form the pion, as is well known, so that we recover the pion mass,
274me.
In other words at scales greater than the Compton wavelength the above
description will correspond to that of an electron, while at scales ≥∼ the
Compton wavelength, it corresponds to a pion and at scales ≤∼ the Compton
wavelength, it corresponds to a quark, which is physically meaningful.
In any case we recover the usual structure of the proton in terms of the three
quarks. So quarks are electrons (or positrons) at a smaller scale!
It has been discussed in detail in ref.[24], how we can accommodate anti-
particles, for example positrons.
Thus, it appears that the treatment of leptons and quarks as QMKNBH leads
to meaningful results in a unified description. On the other hand, these are
the most fundamental constituents of matter, according to current thinking.

1.5 Prospect

In any case, we will explore in this book, a model originating in the above
consideration, in which spacetime is fuzzy at the Compton scale. As Wein-
berg puts it [83], “The infinities in ordinary quantum field theories can be
traced to the fact that the fields describe point particles...”
We also investigate how the Compton scale can emerge from an even more
fundamental scale, the Planck scale. As we will see in Chapters 5 and 6 and
subsequent Chapters, the picture that emerges is: From a dark energy or
Quantum Vacuum or Zero Point Field background, oscillators at the Planck
scale are formed. Such oscillators “condense” into elementary particles at the
Compton scale, which are also the lowest energy and therefore stable states.
At the same time these Planck oscillators provide an underpinning for the
entire Universe, which on the one hand is a collection of elementary particles,
and on the other is an excited state of a collection of Planck oscillators. While
a unified picture of gravitation with other interactions is obtained, more fun-
damentally gravitation emerges as a distributional and residual interaction,
being far from a fundamental interaction between particles. This character-
ization, infact resolves a paradox as we will see in Chapter 8, first pointed
out by Weinberg decades ago, and since overlooked.
In this model, spacetime is not only not smooth but is chaotic, as described in
an earlier book, “The Chaotic Universe” (Cf.ref.[24]). At the same time the
cosmology that emerges, as we will see in Chapter 6, is one of fluctuations,
that of a dark energy driven accelerating Universe with a small cosmological
constant - as indeed was subsequently confirmed by observation. These ideas
suggest in Chapter 9 a mass spectrum formula - one which gives the masses
of all known elementary particles with an error of three percent or less.
Finally in Chapter 10 we discuss some further experimental or observational
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consequences. These include the violation of Lorentz symmetry at ultra high
energies, a new “Gravitomagnetic” type interaction and the already observed
anomalous acceleration of the Pioneer spacecrafts.



2 STANDARD MODELS OF PHYSICS AND
COSMOLOGY

”I am inclined to suspect that the renormalization theory is something that
will not survive in the future, and that the remarkable agreement between its

results and experiments should be looked on as a fluke...”

P.A.M. Dirac

2.1 The Strong and Weak Interactions

A major achievement of the twentieth century has been the incorporation
of three of the four fundamental interactions, viz., electromagnetism, weak
interactions and the strong interaction within a unified mathematical frame-
work. This framework is the non Abelian gauge field theory which we will
see a little later and again in Chapter 7 ([11, 12, 84, 85, 68, 86]). Though the
three forces remain different, the underlying mechanism is the same. From
this point of view they could be thought to be different aspects of a single
underlying process.
Thus there are leptons and there are quarks. The difference between these
sets of particles which are perceived today arise because the Universe has
become cold. At sufficiently high energies ∼ 1015GeV , leptons and quarks
would be interchangeable and so also all the three forces would have the
same strength. It must be mentioned that the above energy is still beyond
the reach of foreseeable accelerators.
Apart from leptons and quarks, which are Fermions, or “material” particles,
the fields are mediated by Bosons. These are the photons for electromag-
netism, the W and Z Bosons for weak interactions and the gluons for the
strong interactions.
Quarks were conceived following the work of Gellmann, Ne’eman and Zweig
in the sixties. The motivation had been the overabundance of resonances ob-
served in hadron or strong interaction collisions. These resonances could be
classified on the one hand according to the Regge trajectories that plot the
angular momentum J versus the mass squared, M2 [87]. We will touch upon
this briefly in the next Chapter. On the other hand, there was the SU(3)
classification scheme which related particles of the same spin but different
quantum numbers by introducing elemental entities - the quarks - whose

21
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combinations could account for all observed hadrons.
It is now believed that there are six kinds of quarks: The down (d), the up
(u), the strange (s), the charmed (c), the bottom (b) and the top (t). We
attribute to the quarks three colours, red, green and blue which are gen-
eralizations of the positive and negative charges. It is these colours which
characterize strong interaction and hence this field has come to be known as
Quantum Chromo Dynamics (QCD). It may be observed that the leptons do
not have any colour and so they do not participate in the strong interactions.
A peculiarity of quarks is their fractional charge - they have either the charge
1
3 or the charge 2

3 with their corresponding anti particles having opposite
charges. So quarks can combine in two different ways to form hadrons, that
is particles like protons and neutrons: Either as quark, anti-quark pairs or as
a triplet of quarks, such that the total charge is either one or zero.
In electromagnetism, or Quantum Electro Dynamics (QED), two charged
particles interact by the exchange of a photon, more correctly a virtual pho-
ton [88]. This exchange takes place within the Heisenberg Uncertainty time.
There is a conservation of electric charge in the process. This combined with
the masslessens of the photon is characteristic of the U(1) Group which char-
acterizes QED.
QCD is modelled on QED. However QCD which is described by the SU(3)
group is more complicated because it describes interactions of three different
colours, unlike QED which deals with just one charge. In QCD the interaction
between different colours is expressed in terms of eight massless particles, the
gluons, unlike the single photon of QED. Another profound difference is that
the gluons do carry colour unlike the photon which is chargeless. The nett
result of all this is that there is an effect opposite to that encountered in the
charge screening of QED. In this latter case, an electron is surrounded by
virtual electron-positron pairs. The electron attracts the positrons and repels
the electrons of these pairs with the result that at large enough distances, the
electron charge is shielded by the positrons and so appears reduced. In QCD
on the other hand, virtual gluon pairs, themselves carrying colour are formed
around a quark, no doubt. But there is now an anti screening effect as if the
red component of a gluon is attracted to the red of a quark, for example.
So at relatively larger distances, the colour charge of a quark increases and
again contrary to the QED scenario, decreases as we approach the quark.
The QCD force can therefore be compared to rubber bands - as we stretch,
the elastic force manifests itself, but if the bands slacken at close range, the
force decreases and even disappears. It is as if there is confinement at large
distances and freedom at shorter, asymptotic distances.
The QCD potential can be written as [68, 89]

V (r) = −α(r)
r

+
r

β2

This consists of the Coulombic part ∝ −1
r and a confining part ∝ r. Because

of this latter, which dominates for large r, free quarks cannot be observed in
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nature. On the other hand, the Coulombic part ensures that for small r, the
inter quark force vanishes, a circumstance which is called asymptotic free-
dom. Professors Wilczek, Politzer and Gross were awarded the 2004 Nobel
Prize in Physics for this work, done thirty years earlier.
The neutrinos are closely associated with the weak interactions. Though the
neutrinos are leptons, they differ from their counterparts in that they are
massless (or more precisely, they have a very tiny mass). A massless Fermion
exhibits handedness, that is, its spin is either aligned in the direction of its
motion (righthanded) or it is aligned anti parallel to its motion (lefthanded).
This extra property of handedness characterizes the weak force which violates
parity, unlike the other forces (though even the quarks exhibit handedness!).
Only lefthanded particles and righthanded anti particles bear a weak charge
while the righthanded particles and the lefthanded anti particles are neutral
from the point of view of the weak interaction. This interaction acts on dou-
blets of particles, which latter are described by the SU(2) Group, in which
particles of a doublet pair can be transformed into one another. The weak in-
teractions are mediated by the W Bosons. However a suitable mixture yields
both the photon of electromagnetism and the Z◦ characterizing weak interac-
tions. This theory therefore combines electromagnetic and weak interactions
and is incorporated in the SU(2) XU(1) group [8].
An important difference between the weak forces on the one hand and QED
and QCD on the other is that the intermediate particles of the weak inter-
actions, the W and Z Bosons are not massless, but rather have large masses
∼ 100GeV . This is characteristic of the fact that the weak charge is not in-
variably conserved and moreover has an extremely short range ∼ 10−15cms.
We will return to this point later.
One of the problems that has plagued modern field theories is that of in-
finities. Indeed this problem was encountered early in the twentieth century
itself when an attempt was made to model the electron as a tiny sphere. If the
radius of the sphere was then made to shrink indefinitely, the energy of the
electron increased without limit [201]. In QED for instance, if we approach
the electron through the shield of screening positrons, the bare charge of the
electron would be infinite. It is only the physically observable charge, at a
distance, screened by the positron charges, which is finite. It is as if the in-
finite bare negative charge has been cancelled or neutralized by the infinite
screening positive charge, the nett result being the observed finite physical
charge. Loosely speaking this procedure is called “renormalization”.
Mathematically, we encounter divergent integrals [90]. The infinities are elim-
inated in two steps. In the first step, called regularization, we introduce con-
straints, for example a cut off (or a lattice structure), to get a finite result
dependent on the regularization parameter like the cut off. Counter terms
(dependent on these parameters) are then added to the Lagrangian, such
that they cancel the parameter dependent integrals. This generally leads to
a rescaling of the mass, charge etc. This is the process that is called Renor-
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malization.
The concept of Renormalization is unsatisfactory from the logical point of
view as well as from the point of view of internal consistency. It has provoked
unease among Physicists such as Dirac quoted above [91] or as we will see
later in Chapter 5,’t Hooft and several others. Its merit however, has been
that phenomenologically speaking, it works.

2.2 Gauge Fields

It has now come to be recognized that the physical principle governing the
fundamental interactions between the elementary particles is gauge invari-
ance. This principle, as we shall see in detail in Chapters 5 and 7, was orig-
inally introduced by Hermann Weyl, though in a different form and with
a different motivation viz., the attempt to give a unified General Relativis-
tic description of electromagnetism and gravitation [92]. At that time these
were the only two known interactions and electrons and protons were the
only known elementary particles. Weyl’s original theory was soon dismissed
as adhoc. But nevertheless it was recognized that gauge invariance was a
symmetry of Maxwell’s equations with useful implications.
Then in the 1950s Yang and Mills (and Shaw) tried to extend gauge sym-
metry to other interactions. It must be emphasized that both in Special
Relativity and General Relativity there are no absolute frames of reference
in the Universe. The physics within a system is independent of the choice
of the reference frame. However in Special Relativity this freedom of choice
of reference frame is a global symmetry- the Lorentz symmetry. In General
Relativity on the other hand, the reference frame is to be defined locally, that
is at each and every point in the gravitational field. There are the connections
- the affine connections or Christofell symbols which relate nearby frames in
General Relativity, something which is not required in Special Relativity [6].
Weyl attempted to investigate if there were similar connections associated
with electromagnetism [92]. Just as in General Relativity, all physical mea-
surements are relative, so also could the norm of a physical vector depend on
its location? If so, a new connection would be required to relate the lengths
of the vectors at different positions. This clearly would be a local property.
It was called Gauge Invariance. Let us see how this can be expressed math-
ematically [84, 93]. In essence we have to multiply the norm of a vector
fµ(xµ) ≡ f(x) at x ≡ xµ by a scale factor S(xµ) ≡ S(x), which latter would
represent the change in scale from point to point. So we have for a small
displacement to the point x + dx, the equations

S(x + dx) = 1 + ∂µSdxµ

Sf = f + (∂µS)fdxµ + ∂µfdxµ

If f is a constant vector, then we have
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(∂µ + ∂µS)fdxµ

As can be seen from the above, the derivative ∂µS is the new mathematical
connection associated with the gauge transformation. Weyl identified this
connection with the electromagnetic potential Aµ. This is motivated by the
fact that a second gauge change with a scale factor Λ leads to

∂µS → ∂µS + ∂µΛ

which mimics the behavior under a gauge transformation of the electromag-
netic potential in classical theory,

Aµ → Aµ + ∂µΛ

With the advent of Quantum Theory, Weyl himself realized that his old idea
could be given a new interpretation. Rather than being a change of scale, a
gauge transformation could be interpreted as a phase transformation. This is
because if

ψ → ψe−ıλ (2.1)

then for the electromagnetic potential we would have

Aµ → Aµ − ∂µλ (2.2)

Equation (2.1) together with equation (2.2) is a symmetry transformation of
the Schrodinger equation. All this is nothing but the well known minimum¨
coupling algorithm,

pµ → pµ − eAµ

The reason that this reinterpretation of gauge transformations is acceptable
is that the Quantum Mechanical phase is not a directly measurable quan-
tity. It is now clear that electromagnetism can be interpreted as a Quantum
Mechanical local gauge theory. This time it is the local phase of the wave
function which is the physical degree of freedom that depends on its space-
time position.
The modern rebirth of gauge theory stemmed from a study of the strong
forces mediated by the Yukawa Meson, and Heisenberg’s iso spin interpreta-
tion of the identity of neutrons and protons when electromagnetic interactions
are switched off. That is the strong force was invariant in the SU(2) isotopic
spin group.
The difficulty was that iso spin is not a local gauge symmetry, because it
is an internal Quantum number independent of spacetime location. So there
was no question of an iso spin potential connection whose Quantum would
be the Yukawa Meson.
Nevertheless in 1954 Yang and Mills went ahead to treat strong interactions
as a gauge invariant field theory by postulating that the local gauge group was
the SU(2) iso spin group, in analogy with the electromagnetic case. This time
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the proposed connection was a linear combination of the angular momentum
operators,

Aµ =
∑

ı

Aı
µ(x)Lı (2.3)

This is a generalization of the electromagnetic case. In the latter, the op-
erators Lı are replaced by the unit matrix and the coefficients Aµ(x) are
proportional to the phase change δµλ. As can be seen from (2.3) the Yang-
Mills potential is both a field in spacetime and an operator in iso spin space.
It must be observed that like the electromagnetic field the Yang-Mills field is
mediated by zero mass Bosons. This is because a massive intermediary would
imply a term of the form m2AµAµ, which is clearly not gauge invariant.
Let us now see how a symmetry group transformation leads us to a connec-
tion which can be identified with the gauge potential field. Indeed, for an
arbitrary non-Abelian group, the symmetry transformation is given by

UΨ = exp

(
ıq

∑
k

Θk(x)FkFF

)
Ψ (2.4)

In (2.4), the fact that Θk(x) are continuous functions of x defines the local
transformation. q is the coupling constant for the gauge group in question.
FkFF are the generators of the internal symmetry group, satisfying the commu-
tation relations

[FıFF , FjFF ] = ıεıjkFkFF ,

In (2.4) if an infinitesimal transformation of the spacetime coordinate is car-
ried out, we get instead of the usual derivative, the gauge covariant derivative
describing the changes in both the external and internal components of Ψ(x)
viz.,

DµΨβΨ =
∑
α

[δβα∂µ − ıq(Aµ)βα] ΨαΨΨ (2.5)

where Aµ are given by

(Aµ)αβ =
∑

k

(∂µΘk)(FkFF )αβ

A special case of (2.5) is the U(1) electromagnetic gauge group, for which
this reduces to the usual form with the minimal coupling

DµΨ = (∂µ − ıqAµ)Ψ

Thus for the electromagnetic gauge group the gauge covariant derivative is
the familiar canonical momentum. It must be noted that the potential Aµ is
both an external field and as well, an internal space operator. Furthermore
in the non-Abelian gauge group, an internal operator part of the potential
would contain a linear combination of the group generators, FkFF which do not
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in general commute. However as we saw above, the problem has been that we
cannot incorporate a mass for the gauge field in an invariant manner. This is
achieved by considering an additional field. In the case of weak interaction this
is the Higgs field, which breaks the symmetry and leads to a mass generating
mechanism. We will be returning to this point later in Chapter 7.

2.3 Standard Cosmology

In the sixties, it was not suspected that Elementary Particle Physics would
be intimately connected with cosmology, which was at the other end of the
spectrum in terms of sizes! But it was subsequently realized that further
experimentation on theoretical particle models would require energies that
could not be available in foreseeable particle accelerators. Fortunately the
Big Bang model of cosmology provides a scenario in the early Universe where
such high energies were accessible and consequently particle physics predic-
tions become testable. The very interesting development that has emerged
is that Particle Physics and cosmology have got linked by this high energy
bridge.
The so called Big Bang model arose from three main observations. The first
was the discovery in the 1920s that the Universe is expanding, in the sense
that the basic constituents, the galaxies (as then believed) showed red shifts.
Furthermore as Hubble discovered, the farther the galaxy, the greater its
speed of recession. This is Hubble’s Law: v = Hr, where H is the Hubble
constant.
Another important observation was about light element abundance - or over-
abundance - in the Universe. In the 1940s Gamow and coworkers provided
an explanation for this. The early Universe must have been very hot and
dense. The synthesis of light elements took place when the Universe was at
a temperature of 109K. However heavier elements were formed later, inside
the stars, and were strewn about by supernova explosions.
Finally there was a cosmic footprint of an explosion from a very early hot
and dense state. This was the residual background radiation from that early
event. In the present epoch however the earlier intense radiation would have
cooled, and it was calculated that it would be in the form of microwaves.
Exactly such a cosmic background microwave radiation footprint was acci-
dentally discovered in 1965 by Penzias and Wilson. This effectively overthrew
a competing model of that time - the Steady State Model, which has now
become history [80].
So the picture to emerge [80, 59, 46] was that the Universe was born in a
titanic explosion or Big Bang, as Gamow had christened it. Exactly at the
time of the Big Bang some fourteen billion years ago, it is reckoned, all the
matter and energy of the Universe was concentrated at a single point, where
the density and curvature would be infinite. This is the Big Bang singularity.
Following the Big Bang, matter and energy has been flung all round and even
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today the galaxies (or clusters of galaxies) are rushing outward due to that
initial impact.
The question that arises is, will the expansion of the Universe continue for
ever, or would it slow down to a halt and then collapse? The answer to this
would depend on the mass/energy density of the Universe. If this value is
greater than a critical value, then the gravitational attraction will ultimately
prevail over the expansion and the Universe would collapse. But if the density
is less than the critical value, the Universe would go on expanding for ever.
This critical density is given by,

ρcrit =
3H2

8πG
= 2 × 10−29h2g/cm3

Observations seem to indicate that the density of the Universe was close to the
critical value. Further an observation of the speeds of rotation along the radii
of the galaxies indicated that the galaxies themselves contained more matter
than met the eye. This lead to “Dark Matter” being invoked. Dark matter has
not been directly detected, nor can it be precisely characterized, even though
there have been a number of possible candidates. For example invisible Black
Holes or even difficult to detect brown dwarf stars. Exotic massive particles
have also been proposed as also massive neutrinos or monopoles. With dark
matter thrown in, it was believed that the Universe had the critical density
to reverse the expansion.
Though the Big Bang model could explain several observations, there were
subtler questions which came to haunt. These were: How come the density
of the Universe, which could have been anything, is infact so close to the
critical density in a process spread over billions of years? More precisely such
a close critical density today would imply that even after about a billionth
of a second after the Big Bang the density was equal to the critical density
accurate to some twenty five decimal places. Alternatively this means that
the Universe or space is very flat. This need not have been so.
And then the Universe appears uniform on large scales. For instance the
cosmic microwave background radiation is uniform in temperature to a high
degree of accuracy. How can this be so for regions separated by such vast
distances, that since the Big Bang light itself has not had enough time to
connect them. This is called the horizon problem.
Finally how do we account for the small scale inequalities or lumps in the
Universe which we see as galaxies?
In 1981 Alan Guth proposed his inflation Theory ([73, 94]). According to
this there was a super fast or super rapid expansion in the early stages of
the Universe, so that the size of the Universe exploded to several times its
original size within a small fraction of a second.
To put it simply this super fast or exponential expansion flattens out the
Universe, thus explaining the first problem. The horizon problem is also ac-
counted for: Due to the super fast expansion or inflation, distant regions were
much closer together than with an usual expansion. So they would be at the
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same temperature. Furthermore Quantum fluctuations in the inflation field
would cause fluctuations in density, that is they would seed the formation
of galaxies. Finally it may be added that given the inflationary scenario, the
fact that exotic particles like magnetic monopoles are not detected is also
explained. The rapid inflation would have diluted such particles and made
them unobservable.
A time line of the Universe would be [95]

1 t = 10−43secs, T = 1032K

The Planck era of Quantum Gravity would have just ended and the Universe
would be described by a Grand Unified Theory

2 t = 10−35secs, T = 1028K

The Grand Unified symmetry is broken. The size of the Universe would still
be only a millimeter across

3 t = 10−10secs, T = 1015K

At this stage electroweak symmetry is broken. Already the Universe has
swelled to a size of 1014cms.

4 t = 10−5secs, T ∼ 1012K

QCD is switched off and quarks combine to form hadrons

5 t ∼ 3min, T ∼ 109K

Nucleosynthesis begins and nuclei of lighter elements like Helium and Lithium
begin to form

6 t = 10−5yrs, T ∼ 4000K

Electrons and nuclei combine to form neutral atoms as charged particles are
no longer present. So there is no scattering of photons and radiation in general
including the Cosmic Microwave Background Radiation.
Interestingly Optical and Radio Astronomy cannot probe beyond this time

7 t ∼ 109yrs, T ∼ 10K

Galaxy formation begins

8 t ∼ 1010yrs, T ∼ 2.7K

This is the Universe of today.
The above was the model till 1997. That year, the author put forward an
alternative model which infact went against the then existing belief. On the
contrary, this model predicted a dark energy driven accelerating ever expand-
ing Universe. In 1998 dramatic confirmation for the new model came from
the observations of Perlmutter, Schmidt, Kirshner and others. We will come
back to this in Chapter 6.



3 DIFFERENT APPROACHES: QUANTUM
SUPERSTRINGS AND QUANTUM
GRAVITY

“Bodies are formed by ultimate atoms (sub constituents) in constant
vibration”

Kanada, Ancient Indian Thinker, C.700 B.C.

3.1 String Theory

We saw in the last two Chapters that inspite of some success, the standard
theory has failed to quantize gravitation. It was also seen that one of the
obstacles was the point spacetime concept ingrained in these theories. For
the past few decades Quantum Gravity schemes as also string theory have
broken out of this limitation. Let us first consider string theory.
We begin with the important work of T. Regge in the fifties [87, 96, 97],
in which he mathematically analysed using techniques like analytically con-
tinuing the angular momentum into the complex plane, particle resonances.
These resonances seem to fall along a straight line plot, with the angular
momentum being proportional to the square of the mass.

J ∝ M2, (3.1)

All this suggested that resonances had angular momentum, on the one hand
and resembled extended objects, that is particles smeared out in space.
This went contrary to the belief that truly elementary particles were points in
space. Infact at the turn of the twentieth century, Poincare, Lorentz, Abraham
and others had toyed with the idea that the electron had a finite extension,
but they had to abandon this approach as noted earlier, because of a conflict
with Special Relativity. The problem is that if there is a finite extension for
the electron then forces on different parts of the electron would exhibit a time
lag, requiring the so called Poincare stresses for stability [201, 327, 98].
In this context, it may be mentioned that in the early 1960s, Dirac came up
with an imaginative picture of the electron, not so much as a point particle,
but rather a tiny closed membrane or bubble. (We mentioned that the elec-
tron could be thought of as a shell, in Chapter 1). Further, the higher energy
level oscillations of this membrane would represent the ”heavier electrons”
like muons [99].

31
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Then, in 1968, G. Veneziano came up with a unified description of the Regge
resonances (3.1) and other scattering processes. Veneziano considered the col-
lision and scattering process as a black box and pointed out that there were
in essence, two scattering channels, s and t channels. These, he argued gave
a dual description of the same process [23, 100].
In an s channel, particles A and B collide, form a resonance which quickly
disintegrates into particles C and D. On the other hand we have in a t chan-
nel scattering particles A and B approach each other, and interact via the
exchange of a particle q. The result of the interaction is that particles C and
D emerge. If we now enclose the resonance and the exchange particle q in an
imaginary black box, it will be seen that the s and t channels describe the
same input and the same output: They are essentially the same.
There is another interesting hint which we get from Quantum Chromo Dy-
namics. Let us come back to the inter-quark potential [68, 89]. As we saw
in the last Chapter, there are two interesting features of this potential. The
first is that of confinement, which is given by a potential term like

V (r) ≈ σr, r → ∞,

where σ is a constant. This describes the large distance behavior between two
quarks. The confining potential ensures that quarks do not break out of their
bound state, which means that effectively free quarks cannot be observed.
The second interesting feature is asymptotic freedom. This is realized by a
Coulombic potential

VcVV (r) ≈ −∝ (r)
r

(small r)

where ∝ (r) ∼ 1
ln(1/λ2r2)

The constant σ is called the string tension, because there are string models
which yield V (r). This is because, at large distances the inter-quark field is
string like with the energy content per unit length becoming constant. Use
of the angular momentum - mass relation indicates that σ ∼ (400MeV )2.
Such considerations lead to strings which are governed by the equation [101,
102, 14]

ρÿ − Ty′′ = 0, (3.2)

ω =
π

2l

√
T

ρ
, (3.3)

T =
mc2

l
; ρ =

m

l
, (3.4)√

T/ρ = c, (3.5)

T being the tension of the string, l its length and ρ the line density and ω in
(3.3) the frequency. The identification (3.4) gives (3.5), where c is the velocity
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of light, and (3.2) then goes over to the usual d’Alembertian or massless Klein-
Gordan equation. (It is worth noting that as l → 0 the potential energy which
is ∼ ∫ l

0

∫∫
T (∂y/∂x)2dx rapidly oscillates.)

Further, if the above string is quantized canonically, we get

〈∆x2〉 ∼ l2. (3.6)

The string effectively shows up as an infinite collection of Harmonic oscilla-
tors [14]. It must be mentioned that (3.6) and (3.4) both show that l is of the
order of the Compton wavelength. This has been called one of the miracles
of string theory by Veneziano [23]. In fact the minimum length l turns out
to be given by T/h̄̄2 = c/l2, which from (3.4) and (3.5) is seen to give the
Compton wavelength.
This is a description of what may be called a “Bosonic String”. These theo-
ries have certain technical problems, for example they allow the existence of
tachyons. Further they do not easily meet the requirements of Quantum The-
ory, as for example the commutation relations. The difficulties are resolved
only in twenty six dimensions.
If the relativistic quantized string is given rotation [104], then we get back
the equation for the Regge trajectories given in (3.1) above. Here we are deal-
ing with objects of finite extension rotating with the velocity of light rather
like spinning Black Holes. It must be pointed out that, in superstring theory,
there is an additional term a0

J ≤ (2πT )−1M2 + a0h,¯̄ with a0 = +1(+2) for the open (closed) string.
(3.7)

In Equation (3.7) a0 comes from a zero-point energy effect. When a0 = 1 we
have the usual gauge Bosons and when a0 = 2 we have the gravitons.
The theory of Quantum Superstrings in contrast requires only ten dimen-
sions. Here, Quantum operators describing anti-commuting variables satisfy
anti-commutation relations. Indeed this bivalence is a hallmark of supersym-
metry itself.
The extra dimensions that appear in String theories reduce to the four di-
mensions of the physical spacetime by virtue of the fact that the redundant
dimensions are treated as curled up into a negligible extension, in the manner
suggested by Kaluza and later Klein in the early twentieth century. Kaluza’s
original motivation had been to unify electromagneitsm and gravitation by
introducing a fifth negligible coordinate. The curling up takes place at the
Planck scale [105].
A finite extension for an elementary particle, as in String theories can be
shown to lead to new commutation relations, as was done by Snyder in the
forties. In this case two space coordinates like x and y do not commute. Sny-
der’s original motivation had been to fudge and eliminate singularities and
divergences in Quantum fields. We will return to all this later particularly
in Chapter 5, but remark that what this implies is that space coordinates in
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some sense take on the character of momenta in addition, though this hap-
pens at very small scales or high energies. Effectively there is a modification
of the Uncertainty Principle

∆x ≥ h̄̄

∆P
+ l2

∆P

h̄̄
(3.8)

What all this means is we cannot go down to lower and lower scales arbi-
trarily. As we approach the minimum length we return to the larger Universe
[17]. We will return to this point several times.
The interesting thing about Quantum Superstring theory is the natural emer-
gence of the spin 2 graviton as can be seen from (3.7), or as Witten puts it,
the theory “predicts” gravitation.
Meanwhile supersymmetry or SUSY developed in parallel. This theory re-
quires that each particle with integral spin has a counterpart with the same
mass but having half integral spin. That is Bosons have their supersymmet-
ric counterparts in Fermions. SUSY is then broken so that the counterparts
would have a much greater mass, which would then account for the fact that
these latter have not been observed. Nevertheless the fact that in this theory
gravitation can be unified with the other forces makes it attractive.
Infact this had lead to Supergravity in which the spin 2 graviton has the
spin 3/2 counterpart, the gravitino. Supergravity requires eleven spacetime
dimensions, one more than Superstring theory.
Unfortunately Supergravity began to fade from the mid eighties because of
the fact that, as shown by Witten and others, handedness cannot easily
emerge on reduction to the four physical spacetime dimensions from eleven.
On the other hand the Quantum Super String theory was in comparison alto-
gether more satisfactory. We could say that the earlier bosonic String theory
worked in a spacetime that was Bosonic, there being no place for spin. QSS
works in a Fermionic spacetime where we have the modification (3.8), to
which we will return in Chapter 5 and following Chapters.
So in the mid eighties ten dimensional QSS displaced Supergravity. There
were five QSS theories - E8 × E8 heterotic, SO(32) heterotic, the Type I,
the Type IIA and Type IIB. Of these the Type I is an open string while the
others form closed loops. The E8 ×E8 appeared to explain many features of
elementary particles and their forces.
However there were some disturbing questions. Why were there five different
theories? After all we need a unique theory. And then why ten dimensions,
while supersymmetry allows eleven dimensions? Another not very convincing
factor was the fact that particles were being represented as one dimensional
strings. Surely a more general formulation as noted above would have two
dimensional surfaces or membranes or even p-dimensional entities which we
may call p-branes. This generalization resembles the earlier attempt of Dirac’s
representing particles as a shell or membrane. Infact if the radius of the circle
shrinks, the membrane begins to resemble a rolled up object in ten dimen-
sions. It reduces to a Type IIA Superstring.
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In such deformations certain topological properties can remain conserved. A
good example is a knot in a set of field lines. Such knots or solitons remain
as such and exhibit a particle type behaviour. A magnetic monopole can be
characterized in this way, that is as a twisted knot of magnetic lines. It can be
said to carry a topological charge. This is to be contrasted with the charges
carried by particles like electrons and quarks which can be put within the
framework of the Noether Conservation Theorem. In this context an inter-
esting conjecture is that of Montonen and Olive [106]: There could be a dual
formulation in which the roles of the usual charges and topological charges
are reversed. In such a formulation for example a particle with charge e would
show up as a soliton with charge 1

e .
Over the past few years, a variant called M Theory arising from these general-
izations has attracted much attention. This theory also uses supersymmetry,
which is broken so that the postulated particles do not have the same mass
as the known particles. Further these new masses must be much too heavy to
be detected by current accelerators. The advantage of supersymmetry is that
a framework is now available for the unification of all the interactions includ-
ing gravitation. It may be mentioned that under a SUSY transformation, the
laws of physics are the same for all observers, which is the case in General
Relativity (gravitation) also. Under SUSY there can be a maximum of eleven
dimensions, the extra dimensions being curled up as in Kaluza-Klein theo-
ries. In this case there can only be an integral number of waves around the
circle, giving rise to particles with quantized energy. However for observers in
the other four dimensions, it would be quantized charges, not energies. The
unit of charge would depend on the radius of the circle, the Planck radius
yielding the value e. This is the root of the unification of electromagnetism
and gravitation in these theories.
The relevance of all this is that p-branes can be characterized as solitons. For
example a ten dimensional string can show up as a p-brane with p = 5. In this
case a strongly interacting string would be the dual of a weakly interacting
5-brane. In 1990 the Montonen-Olive duality which was between electricity
and magnetism in ordinary four dimensional space, was generalized to four
dimensional Superstrings.
This duality was called S-duality, to distinguish it from the well known T-
duality which relates two kinds of particles that arise when the string loops
around by a compact dimension: There would be vibrations on the one hand
and multiple windings on the other. Winding particles over a circle of radius
r correspond to vibrating particles in a circle of radius 1/r and conversely
on the lines of (3.8). We will be returning to this aspect in Chapter 5 and
subsequently, as such a behaviour is characteristic of minimum spacetime in-
tervals. In this picture the solitonic interaction is given by the reciprocal of
the string interaction, in conformity with the Montonen-Olive conjecture.
A further interesting development was the realization that in the reduction
of the dimensions of spacetime to four dimensions the string and the cor-
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responding soliton each acquire a T-duality. Moreover the T-duality of the
solitonic string is the S-duality of the fundamental string and conversely. We
have here a duality of dualities. It also implies that the interaction charges
in one Universe show up as sizes in the dual.
Further the eleventh and extra dimension of the M-Theory could be shrunk,
so that there would be two ten dimensional Universes connected by the eleven
dimensional spacetime. Now particles and strings would exist in the parallel
Universes which can interact through gravitation. The interesting aspect of
the above scenario is that it is possible to conceive of all the four interac-
tions converging at an energy far less than the Planck energy (1019GeV ).
Infact the Planck energy is so high that it is beyond foreseeable experiments.
Thus this would bring the eleven dimensional M-Theory closer to experiment.
There have been further developments involving what are called Dirichlet
surfaces. It is now suspected that Black Holes can be treated as intersecting
black branes wrapped around seven curled up dimensions. There is here, an
interesting interface between M-Theory and Black Hole physics [107]. In M-
Theory, the position coordinates become matrices and this leads to, as we
will see in detail in Chapter 5, though from a different perspective, a non-
commutative geometry or fuzzy spacetime in which spacetime points are no
longer well defined [108]

[x, y] �= 0��
From this point of view the mysterious M in M-Theory could stand for Ma-
trix, rather than membrane. In any case, as we will argue in Chapter 5, fuzzy
spacetime may well hold the key for the unification of all interactions.
So M-Theory is the new avatar of QSS. Nevertheless it is still far from being
the last word. There are still any number of routes for compressing ten di-
mensions to our four dimensions. There is still no contact with experiment.
It also appears that these theories lead to an unacceptably high cosmological
constant and so on.

3.2 Loop Quantum Gravity

An alternative approach was developed in the mid eighties by Abhay Ashtekar,
Ted Jacobson, Lee Smolin, Carlo Rovelli and others [110]. This has come to
be known as Loop Quantum Gravity (LQG). In this approach too, spacetime
is no longer a differentiable manifold. However there is an ingenious use of
Quantum Theory with two important concepts of General Relativity viz.,
background independence and diffeomorphism invariance.
To put it roughly, according to the former principle the geometry of spacetime
is an evolving dynamical quantity, which can be obtained from suitable equa-
tions. The latter principle which is closely connected with the former means
that any arbitrary set of coordinates can be used to describe spacetime phe-
nomenon. Surprisingly the above considerations lead to the conclusion that
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space is quantized [110]. Indeed, we will argue in Chapter 5 that such a pre-
scription is built into a Quantum theoretic description of the Universe.
So in LQG, a volume in space or the surface of this volume cannot be ar-
bitrarily small - there are fundamental minimum units, viz., at the Planck
scale lP . So the minimum area would be l2P and the minimum volume would
be l3P . The minimum area turns out to be fundamental [111].
A polyhedral volume is considered to be a node and is depicted by a dot
while the enclosing flat surfaces are depicted by lines sticking out of the dot.
So any arbitrary volume would be, what may be called a network of these
dots and lines. Infact the important idea is that this network of dots and
lines is space rather than being a structure embedded in space. Such a de-
piction pleasingly concurs with Roger Penrose’s spin network proposal of the
1970s [72]. Every Quantum state corresponds to one of the possible networks
formed by nodes and lines. The nodes and lines with further characterization
would also represent respectively particles and fields. Motion is now a result
of discrete changes in the networks. Any process as in Quantum Theory is
described by probabilities which have been worked out for the changes in
the spin networks. When we introduce time the spin networks become spin
foams. Clearly dots become lines and lines become surfaces due to the extra
dimension. However the flow of time is no longer smooth as is the case in
standard theories. Rather time progresses in discrete steps, each of duration
of the Planck time. In other words the progress of time can be pictured by a
discrete sequence of spin networks.
Though Loop Quantum Gravity has made some progress over the years, as
Lee Smolin, one of the founders [112] puts it, “Many open questions remain
to be answered in Loop Quantum Gravity. Some are technical matters that
need to be clarified. We would also like to understand how, if at all, Special
Relativity must be modified at extremely high energies. So far our specula-
tions on this topic are not solidly linked to Loop Quantum Gravity calcula-
tions. In addition, we would like to know that classical General Relativity is
a good approximate description of the theory for distances much larger than
the Planck length, in all circumstances. (At present we know only that the
approximation is good for certain states that describe rather weak gravita-
tional waves propagating on an otherwise flat spacetime.) Finally, we would
like to understand whether or not Loop Quantum Gravity has anything to
say about unification: Are the different forces, including gravity, all aspects
of a single, fundamental force? String theory is based on a particular idea
about unification, but we also have ideas for achieving unification with Loop
Quantum Gravity.”
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“... it would be meaningless to speak about the “division” of the original
particles. Experimentally, the concept of “dividing” had lost its meaning”

W. Heisenberg

4.1 Introduction

We saw that inspite of the success of the gauge theoretic formulation of the
fundamental interactions there has been unease particularly about the infini-
ties and their cancellations, apart from the Big Bang singularity itself which
John Wheeler has termed the greatest crisis confronting physics [46]. From
the 1930s itself Bohr, Heisenberg and Dirac were already thinking about the
minimum fundamental spacetime interval. Infact Bohr wrote to Dirac [113] “I
believe firmly the solution of the present troubles will not be reached without
a revision of our general physical ideas still deeper than that contemplated
in the present Quantum Mechanics.”
Heisenberg on the other hand attempted a version of QED based on a lattice
structure for spacetime. Heisenberg’s papers lead Born in the late thirties
and forties to develop a theory of reciprocity between spacetime and energy-
momentum, in which a fundamental length was incorporated.
Also in the forties with the same motivation, Snyder as already noted
[114, 115] worked out a covariant scheme of quantized spacetime. Several
other scholars including Yang and Schild also worked on a similar structure
in the forties. This was pursued subsequently by Hill in 1950, Das in 1960,
Gol’fand in 1963, Kadyshevski, also in 1963 [24, 116, 117],(Cf.ref.[24] for a
detailed bibliography). However the concept of a fundamental length lapsed
into oblivion thanks to the success of the renormalization program and the
gauge formulation.
Nevertheless Dirac was a critic of these successful programmes, right from
the very beginning. Thus he wrote “Recent work by Lamb, Schwinger and
Feynman and others has been very successful... but the resulting theory is an
ugly and incomplete one.” According to his recent biographer Kragh [282],
throughout the remainder of his life he never wavered in the verdict that
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“these [normalization] rules, even though they may lead to results in agree-
ment with observations, are artificial rules, and I just cannot accept that the
present foundations [of relativistic Quantum Field Theory] are correct.” In
fact, in his very last paper, published posthumously under the title “The In-
adequacies of Quantum Field Theory”, Dirac reiterated the following: “Just
because the results [of conventional renormalization theory] happen to be
in agreement with observation does not prove that one’s theory is correct.
After all, the Bohr theory was correct in simple cases. It gave very good an-
swers, but still the Bohr theory had the wrong concepts. Correspondingly,
the renormalized kind of Quantum Theory with which physicists are working
nowadays is not justifiable by agreement with experiments.” [118].
Scholars like Caldirola [119] and others continued to write about the Chronon,
or a basic unit of time, though. These ideas were revived in the late eighties
through the work of Bombelli [120], Finkelstein [121] and others.
Much of the motivation for studying spacetime with a fundamental length
has come from as mentioned a realization that gravitation and Quantum
Mechanics may not be unified within the context of a differentiable space-
time manifold. It has undoubtedly been recognized that a major problem
in introducing quantized spacetime would be that Lorentz symmetry and
General Relativistic covariance would both be violated [122]. However it is
interesting that the work on Loop Quantum Gravity, as mentioned in the
previous Chapter preserves General Relativistic principles within the context
of a quantized spacetime. It may also be mentioned that in his last paper, in
1976, Heisenberg discussed his general dissatisfaction with the quark model
and also pointed out that iterative sub divisions of spacetime might loose
their meaning as we approach immeasurably small intervals [123]. We could
give some logical backing to Heisenberg’s intuition: the process of subdivision
to a single point would require an infinite series of steps and would therefore
be meaningless from the point of view of physical measurement.
The next and subsequent Chapters will investigate these aspects. But let us
briefly survey some interesting approaches.

4.2 Quantum General Relativity

In the above context Prugoveski has done considerable work on Quantum
Geometries incorporating into their structure a fundamental length. In his
own words [113] a summary of some of his results is:

“1. The central concept of this framework is that of quantum frame and
superframe bundle. The frames and superframes in such bundles take over
the role played by the local Lorentz frames of classical General Relativity.
Due to their informational completeness, these local quantum frames and su-
perlocal quantum superframes are capable of taking over the role played by
complete sets of (compatible) observables in orthodox Quantum Mechanics.
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2. In the quantum geometric regime all the counterparts of the constraints
that emerge from classical field theories and from classical General Relativity
are geometrized by means of gauge groups, which inject them into Maurer-
Cartan structural equations that govern the construction of connection forms
in principal quantum frame and superframe bundles.
3. The elements of all massive quantum frame bundles possess an operational
interpretation at the microlevel, obtained by replacing the test particles of
classical relativity with quantum test bodies (i.e., geometro-stochastic exci-
tons).
4. The quantum-geometric evolution of fields in mutual local interactions
within a quantum spacetime supermanifold is described by a perpetually on-
going process of creation and annihilation of the geometro-stochastic excitons
associated with them.
5. In the resulting framework for geometric Quantum Gravity, matter and
quantum fields in free fall propagate by parallel transport along stochastic
paths; those paths are the limits of broken paths corresponding to time-
ordered segmentations of a quantum gravitational spacetime supermanifold.
6. The causal time-ordering in a quantum gravitational supermanifold is in-
trinsic, since it is implicit in the (local) proper time marked by the massive
constituents of the quantum frames. This proper time emerges from an adap-
tation to geometro-stochastic excitons of De Broglie’s (1923, 1924) original
idea that a natural time is inscribed in all matter in existence, since each
elementary quantum object of rest-mass m can be viewed as a natural clock
with mean period T = 2π/m in Plank natural units.
7. The quantum general relativistic covariance principle is embedded in a
quantum gravitational supergroup, which incorporates the semidirect prod-
uct of two types of sub-groups of gauge transformations: one type pertains
to the metric equivalence classes of quantum superframes that are interre-
lated by supergauge transformations originating from superoperator repre-
sentations of the diffeomorphism group, and gives rise to equivalence classes
of mean metrics; the other type describes changes of quantum superframes
within the equivalence class for each of these mean metrics, and is provided
by superunitary representation of the Poincare group.
8. The strong equivalence principle is embedded in the above type of Poincare
gauge invariance, as well as in the mode of the quantum-geometric propaga-
tion of quantum fields, which takes place by parallel transport along the arcs
of the broken paths that are the horizontal lifts of geodesics of the Levi-Civita
connection in each of the metric equivalence classes. These geodesics lie in
the base manifold resulting from the natural fibration of the quantum space-
time supermanifold into superfibres of quantum superframes lying above the
various points in that base manifold - which can be viewed as a “classical”
spacetime manifold that labels the mean stochastic locations of geometro-
stochastic excitons and of the fields producing or annihilating them.
9. The quantum superposition principle is embedded in the path integrals that
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describe the outcome of the quantum-geometric propagation of all quantum
superfields along all possible stochastic causal paths. The causality of these
paths is embodied in the above described features of quantum propagation,
which reflect a microcausal time-ordering and an adaptation of the geodesic
postulate to quantum general relativistic propagation. Their stochasticity is
not due to the presence of probability measures over paths, as in classical
stochastic processes; rather, it is due to the fact that, in constructing the
limits leading to the quantum-geometric propagators of quantum fields and
superfields, the superpositions of propagators for parallel transport are taken,
with purely geometric weighting factors, over all possible broken causal paths
consisting of geodesic arcs”.

4.3 Scale Relativity

Another interesting approach is that of Laurent Nottale who has introduced
the idea of Scaled Relativity [124]-[133]. The main idea is a generalization
of Einstein’s Principle of Relativity to scale transformations. It emerges that
spacetime is scale dependent, that is fractal and so is no longer a differen-
tiable continuum. These new scale relativistic transformations lead to the
appearance of a minimal and a maximal length scale in nature, which are
invariant under dilatations. The minimal length scale is the Planck length
and the maximal scale is Λ− 1

2 where Λ is the cosmological constant.
Nottale has related the fractal and renormalization group approaches to de-
velop a new version of stochastic Quantum Mechanics. In this approach,
the correspondence principle and the Schrödinger equation are obtained by¨
replacing the classical time derivative by a Quantum covariant derivative.
There are many applications of this approach, ranging from the mass spec-
trum of elementary particles through cosmology. One interesting consequence
is that the flat rotation curves of galaxies which lead to the invoking of Dark
Matter in conventional theories are explained in terms of the fractality of
space. Similarly density fluctuations are explained without the necessity of
invoking inflation. So also the horizon problem referred to in Chapter 2 can
be overcome without inflation. There are also interesting manifestations of
“quantized” systems in the macro Universe, e.g., quantized orbits in the solar
system and so on.

4.4 Cantorian Spacetime

A very interesting idea introduced by El Naschie is that of an infinite dimen-
sional transfinite Cantorian spacetime [134]-[143]. This reductionist approach
is then linked to the global thermodynamic interpretation of Quantum Me-
chanics. Quantum Mechanics would now appear to be the result of a turbulent
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but homogenous diffusion process in a transfinite non smooth micro space-
time with an area like Quantum path. Interestingly the four dimensionality of
micro spacetime is now the consequence of the discrete Maxwell Boltzmann
distribution of the elementary Cantor sets forming this space. It turns out
that the effective Hausdorff dimension is given by 4+φ3 where φ is the golden
mean. It is only at the Planck energy scale, that the infinite dimensions of
the underlying space appears. This apart many of the paradoxes of Quantum
Mechanics are traced back to the underlying unstable and non smooth Can-
torian geometry. Several other results are proposed by El Naschie with this
geometry - the fine structure constant, for example. A transfinite heterotic
String Theory is also postulated. However, El Naschie tries to demonstrate
that the strings themselves emerge from the underlying sizzling set of Cantor
spacetime points. There is also an interesting treatment of Quantum Gravity
and also, a mass spectrum for the elementary particles is exhibited.



5 FUZZY SPACETIME AND THE PLANCK
SCALE

“It is somewhat puzzling to the present author why the lattice structure of
space and time had escaped attention from other investigators up till now...”

G. ’t Hooft

5.1 The Origins of Fuzzy Spacetime

The Theory of Relativity (Special and General) and Quantum Theory have
been often described as the two pillars of twentieth century physics. Each
in its own right explained aspects of the universe to a certain extent. But
there are still many unanswered questions. For example spacetime singular-
ities (like the Big Bang), termed by John Wheeler as the Greatest Crisis of
Physics, the many divergences encountered in particle physics, some eighteen
arbitrary parameters in the standard model, elusive monopoles (and Higgs
bosons), gravitational waves and Dark Matter and so on.
To quote t’ Hooft (drawing a comparison with planetary orbits) [144], “What
we do know is that the standard model, as it stands today, cannot be entirely
correct, in spite of the fact that the interactions stay weak at ultrashort dis-
tance scales. Weakness of the interactions at short distances is not enough;
we also insist that there be a certain amount of stability. Let us use the
metaphor of the planets in their orbits once again. We insisted that, during
extremely short time intervals, the effects of the forces acting on the planets
have hardly any effect on their velocities, so that they move approximately in
straight lines. In our present theories, it is as if at short time intervals several
extremely strong forces act on the planets, but, for some reason, they all but
balance out. The net force is so weak that only after long time intervals, days,
weeks, months, the velocity change of the planets become apparent. In such
a situation, however, a reason must be found as to why the forces at short
time scales balance out. The way things are for the elementary particles, at
present, is that the forces balance out just by accident. It would be an in-
explicable accident, and as no other examples of such accidents are known
in Nature, at least not of this magnitude, it is reasonable to suspect that
the true short distance structure is not exactly as described in the standard
model, but that there are more particles and forces involved, whose nature
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is as yet unclear.”
Yet it was almost as if Rudyard Kipling’s ”The twain shall never meet” was
true for these two intellectual achievements - General Relativity and Quan-
tum Theory, a view endorsed by Pauli, who went as far as to say that we
should not try to put together what God had intended to be separate. For
decades there have been fruitless attempts to unify electromagnetism and
gravitation, or Quantum Theory and General Relativity: As Wheeler put it
[46], the problem has been, how to incorporate curvature into Quantum The-
ory or spin half into General Relativity:
“It is impossible to accept any description of elementary particles that does
not have a place for spin 1

2 . What, then, has any purely geometric descrip-
tion to offer in explanation of spin 1

2 in general? More particularly and
more importantly, what place is there in quantum geometrodynamics for
the neutrino–the only entity of half-integral spin that is a pure field in its
own right, in the sense that it has zero rest mass and moves with the speed of
light? No clear or satisfactory answer is known to this question today. Unless
and until an answer is forthcoming, pure geometrodynamics must be judged
deficient as a basis for elementary particle physics.”
At the same time it is also remarkable that both these disparate theories share
one common platform: An underlying differentiable spacetime manifold, be it
the Reimannian spacetime of General Relativity or the Minkowski spacetime
of Relativistic Quantum Theory (including Quantum Field Theory).
However this underlying common feature has been questioned by Quantum
Gravity theories including the author’s own model on the one hand and Quan-
tum Superstrings on the other amongst more recent approaches, which try to
provide a unified description as we saw earlier (Cf.ref.[145] and several refer-
ences therein). We will now argue from a perspective which shares this spirit,
that unification and a geometrical structure for Quantum Theory are possible
if differentiable spacetime is discarded in favour of fuzzy spacetime Indeed
Einstein himself had anticipated this. As he observed around 1930 itself [146]
“... It has been pointed out that the introduction of a space-time continuum
may be considered as contrary to nature in view of the molecular structure
of everything which happens on a small scale. It is maintained that perhaps
the success of the Heisenberg method points to a purely algebraic method of
description of nature that is to the elimination of continuous functions from
physics. Then however, we must also give up, by principle the space-time
continuum. It is not unimaginable that human ingenuity will some day find
methods which will make it possible to proceed along such a path. At present
however, such a program looks like an attempt to breathe in empty space.”
Infact Clifford had also anticipated such ideas much earlier [147]: “I hold in
fact (1) That small portions of space are in fact of a nature analogous to little
hills on a surface which is on the average flat; namely, that the ordinary laws
of geometry are not valid in them. (2) That this property of being curved or
distorted is continually being passed on from one portion of space to another



5.2 Further Considerations 47

after the manner of a wave...”
Perhaps smooth spacetime is an approximation? Infact Mandelbroit’s work
on fractals has clearly brought out that the smooth curves of Classical Math-
ematics are to be replaced in real life, by fractal structures, previously dis-
missed as pathological cases [148]. At the same time this new description
has many ramifications and leads, in our formulation, to a cosmology which
correctly predicted the latest iconoclastic observations, for example that the
Universe is accelerating and expanding for ever with a small cosmological
constant while supposedly sacrosanct constants like the fine structure con-
stant seem to be changing with time.
We start with a physical model so as to clarify ideas as in Chapter 1. The
Kerr-Newman Black Hole of Classical Physics and General Relativity de-
scribes the electron’s purely Quantum Mechanical g=2 factor. But the price
one has to pay is the naked singularity, or equivalently, the complex space
coordinate. Curiously enough, the space coordinate of the Dirac electron has
precisely the same non Hermitian or complex character. In Quantum Theory,
this is due to zitterbewegung effects, which are eliminated, as Dirac pointed
out, by averaging over the Compton scale: spacetime points have no physical
meaning [7]. Compton scale intervals, complex coordinates, spin and non-
commutative geometry, are all symptomatic or indicative of the underlying
fuzzy spacetime.
From Galilean-Newtonian Mechanics to Quantum Field Theory, the concept
is Newtonian, in that spacetime is a container or stage within which the ac-
tors of matter, energy and interactions play their parts, even modifying the
stage. However, the new concept of spacetime is Liebnitzian, in that, the ac-
tors create or define the stage itself [149]. It is now possible to circumvent
spacetime singularities and even the famous divergences.

5.2 Further Considerations

To see all this in greater detail, we observe that if we treat an electron as
a Kerr-Newman Black Hole, then even though we get the correct Quantum
Mechanical g = 2 factor, the horizon of the Black Hole becomes complex
[24, 46].
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G being the gravitational constant, M the mass and a ≡ L/Mc,L being the
angular momentum. While (5.1) exhibits a naked singularity, and as such
has no physical meaning, we note that the position coordinate for a Dirac
particle in conventional theory is given by
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an expression that is very similar to (5.1). Infact the imaginary parts of both
(5.1) and (5.2) are the same, being of the order of the Compton wavelength.
It is at this stage that a proper physical interpretation begins to emerge.
Dirac himself observed as noted, that to interpret (5.2) meaningfully, it must
be remembered that Quantum Mechanical measurements are really averaged
over the Compton scale: Within the scale there are the unphysical zitterbe-
wegung effects: for a point electron the velocity equals that of light.
Once such a minimum spacetime scale is invoked, then we have a non com-
mutative geometry as shown by Snyder more than fifty years ago [114]:

[x, y] = (ıa2/h̄̄)Lz, [t, x] = (ıa2/hc¯̄ )MxMM , etc.

[x, px] = ıh̄̄[1 + (a/h̄̄)2p2
x]; (5.3)

The relations (5.3) are compatible with Special Relativity. Indeed such
minimum spacetime models were studied for several decades, precisely to
overcome the divergences encountered in Quantum Field Theory [24],[115]-
[121],[150, 152].
Before proceeding further, it may be remarked that when the square of a,
which we will take to be the Compton wavelength (including the Planck
scale, which is a special case of the Compton scale for a Planck mass viz.,
10−5gm), in view of the above comments can be neglected, then we return
to point Quantum Theory.
It is interesting that starting from the Dirac coordinate in (5.2), we can de-
duce the non commutative geometry (5.3), independently. For this we note
that the α’s in (5.2) are given by

α =
[

σ 0
0 σ

]
,

the σ’s being the Pauli matrices. We next observe that the first term on the
right hand side is the usual Hermitian position. For the second term which
contains α, we can easily verify from the commutation relations of the σ’s
that

[xı, xj ] = βıj · l2 (5.4)

where l is the Compton scale.
There is another way of looking at this. Let us consider the coordinate in (5.2)
or (5.1) to be complex, reminiscent of Newman’s original complexification of
the coordinate. We now try to generalize this complex coordinate to three
dimensions. Then we encounter a surprise - we end up with not three, but
four dimensions,

(1, ı) → (I, σ),

where I is the unit 2×2 matrix. We get the special relativistic Lorentz invari-
ant metric at the same time. (In this sense, as noted by Sachs [153], Hamilton
who made this generalization would have also hit upon Special Relativity, if
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he had identified the fourth coordinate with time).
That is,

x + ıy → Ix1 + ıx2 + jx3 + kx4,

where (ı, j, k) now represent the Pauli matrices; and, further,

x2
1 + x2

2 + x2
3 − x2

4

is invariant.
While the usual Minkowski four vector transforms as the basis of the four
dimensional representation of the Poincare group, the two dimensional rep-
resentation of the same group, given by the right hand side in terms of
Pauli matrices, obeys the quaternionic algebra of the second rank spinors
(Cf.Ref.[154, 155, 153] for details).
To put it briefly, the quarternion number field obeys the group property and
this leads to a number system of quadruplets as a minimum extension. In
fact one representation of the two dimensional form of the quarternion basis
elements is the set of Pauli matrices. Thus a quarternion may be expressed
in the form

Q = −ıσµxµ = σ0x
4 − ıσ1x

1 − ıσ2x
2 − ıσ3x

3 = (σ0x
4 + ıσ · r)

This can also be written as

Q = −ı

(
ıx4 + x3 x1 − ıx2

x1 + ıx2 ıx4 − x3

)
.

As can be seen from the above, there is a one to one correspondence between
a Minkowski four-vector and Q. The invariant is now given by QQ̄, where Q̄
is the complex conjugate of Q.
However, as is well known, there is a lack of spacetime reflection symmetry
in this latter formulation. If we require reflection symmetry also, we have to
consider the four dimensional representation,

(I,σ) →
[(

I 0
0 − I

)
,

(
0 σ
σ 0

)]
≡ (Γµ)

(Cf.also.ref. [66] for a detailed discussion). The motivation for such a reflec-
tion symmetry is that usual laws of physics, like electromagnetism do indeed
show the symmetry.
We at once deduce spin and Special Relativity and the geometry (5.3). This
is a transition that has been long overlooked [187]. Conversely it must be
mentioned that spin half itself is relational and refers to three dimensions,
to a spin network infact [72]. That is, spin half is not meaningful in a single
particle Universe.
Equally interesting is the fact that starting from the geometry (5.3) we can
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deduce the Dirac equation itself as we will see in the next section.
While a relation like (5.4) above has been in use recently, in non commutative
models, and as noted, was an independent starting point due to the work of
Snyder, we would like to stress that it has been overlooked that the origin of
this non commutativity lies in the original Dirac coordinates.
The above relation shows on comparison with the position-momentum com-
mutator that the coordinate x also behaves like a “momentum”. This can be
seen directly from the Dirac theory itself where we have [7]

cα =
c2p

H
− 2ı

h̄̄
x̂Hˆ (5.5)

In (5.5), the first term is the usual momentum. The second term is the extra
“momentum” p due to zitterbewegung.
Infact we can easily verify from (5.5) that

p =
H2

hc¯̄ 2
x̂ (5.6)

where x̂ has been defined in (5.5).
We finally investigate what the angular momentum ∼ x × p gives - that is,
the angular momentum at the Compton scale. We can easily show that

(x × p)z =
c

E
(α × p)z =

c

E
(p2α1 − p1α2) (5.7)

where E is the eigen value of the Hamiltonian operator H. Equation (5.7)
shows that the usual angular momentum but in the context of the Compton
scale, leads to the “mysterious” Quantum Mechanical spin.
In the above considerations, we started with the Dirac equation and de-
duced the underlying non commutative geometry of spacetime. Interestingly,
starting with Snyder’s non commutative geometry, based solely on Lorentz
invariance and a minimum spacetime length, which we have taken to be the
Compton scale, (5.3), it is possible to deduce the relations (5.7), (5.6) and
the Dirac equation itself as noted [101] and as we will see shortly.
We have thus established the correspondence between considerations start-
ing from the Dirac theory of the electron and Snyder’s (and subsequent)
approaches based on a minimum spacetime interval and Lorentz covariance.
It can be argued from an alternative point of view that Special Relativity
operates outside the Compton wavelength (Cf.ref.[24]).
We started with the Kerr-Newman Black Hole. Infact the derivation of the
Kerr-Newman Black Hole itself begins with a Quantum Mechanical spin yield-
ing complex shift, which Newman has found inexplicable even after several
decades [61]-[63]. As he observed, “...one does not understand why it works.
After many years of study I have come to the conclusion that it works simply
by accident”. And again, “Notice that the magnetic moment µ = ea can be
thought of as the imaginary part of the charge times the displacement of
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the charge into the complex region... We can think of the source as having
a complex center of charge and that the magnetic moment is the moment of
charge about the center of charge... In other words the total complex angular
momentum vanishes around any point za on the complex world-line. From
this complex point of view the spin angular momentum is identical to orbital,
arising from an imaginary shift of origin rather than a real one... If one again
considers the particle to be “localized” in the sense that the complex center
of charge coincides with the complex center of mass, one again obtains the
Dirac gyromagnetic ratio...”
The unanswered question has been, why does a complex shift somehow rep-
resent spin about that axis? The answer to this question lies in the above
considerations. Complexified spacetime is symptomatic of fuzzy spacetime
and a non commutative geometry and Quantum Mechanical spin [154]. In-
deed Zakrzewski has shown in a classical context that non commutativity
implies spin [156, 157].
The above considerations used the Quantum Mechanical spin together with
classical relativity, though the price to pay for this was minimum spacetime
intervals and noncommutative geometry. Is this the path towards a reconcil-
iation of electromagnetism and gravitation?

5.3 Quantum Geometry

One of the earliest attempts to unify electromagnetism and gravitation, was
Weyl’s gauge invariant geometry. The basic idea was [92] that while

ds2 = gµνdxµdxν (5.8)

was invariant under arbitrary transformations in General Relativity, a further
invariant, namely,

Φµdxµ (5.9)

which is a linear form should be introduced. gµν in (5.8) would represent the
gravitational potential, and Φµ of (5.9) would represent the electromagnetic
field potential. As Weyl observed, ”The world is a 3+1 dimensional metrical
manifold; all physical field - phenomena are expressions of the metrics of
the world. (Whereas the old view was that the four-dimensional metrical
continuum is the scene of physical phenomena; the physical essentialities
themselves are, however, things that exist ”in” this world, and we must accept
them in type and number in the form in which experience gives us cognition
of them: nothing further is to be ”comprehended” of them.)· · ·”
This was a bold step, because it implied the relativity of magnitude multiplied
effectively on all components of the metric tensor gµν by an arbitrary function
of the coordinates. However, the unification was illusive because the gµν and
Φµ were really independent elements. As Einstein noted, in Stafford Little
Lectures delivered in May 1921 at Princeton University [4], “...if we introduce
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the energy tensor of the electromagnetic field into the right hand side of
(the gravitational field equation) we obtain (the first of Maxwell’s systems
of equations in tensor density form), for the special case (

√−gρdxν

ds =)rµ =
0, · · · This inclusion of the theory of electricity in the scheme of General
Relativity has been considered arbitrary and unsatisfactory... a theory in
which the gravitational field and the electromagnetic field do not enter as
logically distinct structures would be much preferable...”
A more modern treatment is recapitulated below [6].
The above arbitrary multiplying factor is normalized and we require that,

|gµν | = −1, (5.10)

For the invariance of (5.10), gµν transforms now as a tensor density of weight
minus half, rather than as a tensor in the usual theory. The covariant deriv-
ative now needs to be redefined as

T ι···
κTT ···,σ = T ι···

κTT ···,σ + Γ ι
ρσΓ T ρ···

κTT ··· − Γ ρ
κσΓ T ι···

ρT ··· − nT ι···
κTT ···Φσ, (5.11)

In (5.11) we have introduced the Φµ, and n is the weight of the tensor density.
This finally leads to (Cf.ref.[6] for details).

Φσ = Γ ρ
ρσΓ , (5.12)

Φµ in (5.12) is identified with the electromagnetic potential, while gµν gives
the gravitational potential as in the usual theory. The affine connection is
now given by

Γλ
ικΓ =

1
2
gλσ(gισ,κ + gκσ,ι − gικ,σ) +

1
4
gλσ(gισΦκ + gκσΦι − gικΦσ) ≡

(
λ
ικ

)
(5.13)

The essential point, and this was the original criticism of Einstein and others,
is that in (5.13), gµν and Φµ are independent entities.
Let us now analyze the above from a different perspective. Let us write the
product dxµdxν of (5.8) as a sum of half its anti-symmetric part and half
the symmetric part. The invariant line element in (5.8) now becomes (hµν +
h̄̄µν)dxµdxν where h and h̄̄̄ denote the anti-symmetric and symmetric parts
respectively of g. h would vanish unless the commutator

[dxµ, dxν ] ≈ l2 = 0 (5.14)��

l being some fundamental minimum length. Infact h can be characterized as

hµν = ηρσερσµν ,

where η is an antisymmetric tensor and ε is the Levi-Civita tensor density.
As pointed out a little earlier the noncommutative geometry given in (5.14)
was studied by Snyder and others though from a different perspective. In this
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case it has been shown in detail by the author [158, 71] that under a time
elapse transformation of the wave function, (or, alternatively, as a small scale
transformation),

|ψ′ >= U(R)|ψ > (5.15)

we get

ψ′(xj) = [1 + ıε(ıxj
∂

∂xj
) + 0(ε2)]ψ(xj) (5.16)

Equation (5.16) has been shown to lead to the Dirac equation when ε is the
Compton time. A quick way to see this is as follows: At the Compton scale
we have,

|L| = |r × p| = | h̄̄

2mc
· mc| =

h̄̄

2
,

that is, we get the Quantum Mechanical spin. Next, we can easily verify, that
the choice,

t =
(

1 0
0 − 1

)
,x =

(
0 σ
σ 0

)

provides a representation for the coordinates in (5.3), apart from scalar fac-
tors. As can be seen, this is also a representation of the Dirac matrices.
Substitution of the above in (5.16) leads to the Dirac equation

(γµpµ − mc2)ψ = 0

because
Eψ =

1
ε
{ψ′(xj) − ψ(xj)}, E = mc2,

where ε = τ (Cf.ref.[150]).
Indeed, as noted, Dirac himself had realized that his electron equation needed
an average over spacetime intervals of the order of the Compton scale to
remove zitterbewegung effects and give meaningful physics. This again is
symptomatic of an underlying fuzzy spacetime described by a noncommuta-
tive spacetime geometry (5.14) or (5.4) [154].
The point here is that under equation (5.14), the coordinates xµ → γ(µ)x(µ)

where the brackets with the superscript denote the fact that there is no sum-
mation over the indices. Infact, in the theory of the Dirac equation it is well
known [159]that,

γkγl + γlγk = −2gklI (5.17)

where γ’s satisfy the usual Clifford algebra of the Dirac matrices, and can be
represented by

γk =
√

2
(

0 σk

σk∗ 0

)
(5.18)

where σ’s are the Pauli matrices. As noted by Bade and Jehle (Cf.ref.[159]),
we could take the σ’s or γ’s in (5.17) and (5.18) as the components of a
contravariant world vector, or equivalently we could take them to be fixed
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matrices, and to maintain covariance, to attribute new transformation prop-
erties to the wave function, which now becomes a spinor (or bi-spinor). This
latter has been the traditional route, because of which the Dirac wave func-
tion has its bi-spinorial character. In this latter case, the coordinates retain
their usual commutative or point character. It is only when we consider the
equivalent former alternative, that we return to the noncommutative geom-
etry (5.14).
That is, in the usual commutative spacetime the Dirac spinorial wave func-
tions conceal the noncommutative character (5.14).
Indeed we can verify all these considerations in a simple way as follows:
First let us consider the usual spacetime. This time the Dirac wave function
is given by

ψ =
(

χ
Θ

)
,

where χ and Θ are spinors. It is well known that under reflection while the
so called positive energy spinor Θ behaves normally, χ → −χ, χ being the
so called negative energy spinor which comes into play at the Compton scale
[29]. That is, the space is doubly connected. Because of this property as shown
in detail [71], there is now a covariant derivative given by, in units, h̄̄̄ = c = 1,

∂χ

∂xµ
→ [

∂

∂xµ
− nAµ]χ (5.19)

where
Aµ = Γµσ

σΓ =
∂

∂xµ
log(

√
|g|) (5.20)

Γ denoting the Christofell symbols.
Aµ in (5.20)is now identified with the electromagnetic potential, exactly as
in Weyl’s theory except that now, Aµ arises from the bi spinorial character
of the Dirac wave function or the double connectivity of spacetime. Further,
as shown already [160], the mass density of the particle is given by,

ρ = χχ∗

Indeed ρ vanishes outside the Compton scale for any particle.
What all this means is that the so called ad hoc feature in Weyl’s unification
theory is really symptomatic of the underlying noncommutative spacetime
geometry (5.14). Given (5.14) we get both gravitation and electromagnetism
in a unified picture, because both are now the consequence of spacetime
geometry. We could think that gravitation arises from the symmetric part of
the metric tensor (which indeed is the only term if 0(l2) is neglected) and
electromagnetism from the antisymmetric part (which manifests itself as an
0(l2) effect). It is also to be stressed that in this formulation, we are working
with noncommutative effects at the Compton scale, this being true for the
Weyl like formulation also. We will see this in a little greater detail later.
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That is, once we abandon smooth spacetime manifolds and consider non-
commutative geometries defined by, for example (5.3) or (5.4) or (5.14), then
we are lead to multiply connected manifolds which conceal the Quantum
Mechanical spin half and a unified description of Quantum Mechanics and
Geometrodynamics becomes possible. We will return to this point in Chap-
ter 7. Finally it may be mentioned that the fact that n in (5.19) is integral,
explains the discreteness of electric charge.

5.4 The Unification of Gravitation and
Electromagnetism

The identification of the Kerr-Newman Black Hole of classical physics with
the Quantum Mechanical electron already points to a unified description of
gravitation and electromagnetism. This can be seen directly from the non
commutative geometry (5.4) or (5.14) [161]. Indeed let us start with the ex-
pression for the metric As before, rewriting the product of the two coordinate
differentials in (5.8) in terms of the symmetric and non symmetric combina-
tions, we get for the right side 1

2gµν [(dxµdxν +dxνdxµ)+(dxµdxν −dxνdxµ)],
so that, we can write

gµν = ηµν + khµν (5.21)

where the first term on the right side of (5.21) denotes the usual flat space-
time and the second term denotes the effect of the non commutativity, k
being a suitable constant.
It must be noted that if l, τ → 0 then equation (5.21) reduces to the usual
formulation. From a physical point of view, if we are dealing with time and
length scales much greater than the Compton wavelength, so that the order
0(l2) terms can be neglected, then the usual commutative geometry works,
with the usual derivatives and more generally differential geometry. In that
sense, and at such scales we can attribute the same meaning to coordinate
differentials like dxµ. However this formulation breaks down at and inside
the scale (l, τ) as discussed earlier. In what follows, in order to see the effect
of the non commutative geometry, we will consider scales, near the minimum
(l, τ) scale, and continue to use the concept of derivatives and differentials as
a good approximation, while incorporating the effects of departure from the
commutative geometry at the same time.
The effect of the non commutative geometry is therefore to introduce a de-
parture from flat spacetime, as can be seen from (5.21). Indeed, as is well
known (Cf.ref.[5]), this is exactly as in the case of General Relativity and the
second term on the right of (5.21) plays the role of the usual energy momen-
tum tensor. However it must be borne in mind that we are now dealing with
elementary particles. For an elementary particle, the material density van-
ishes outside its Compton wavelength and therefore also the minimum scale.
On the other hand it should be borne in mind that at and near the minimum
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scale itself we have the departure from the usual commutative geometry, as
we will see below.
Infact remembering that the second term of the right side of (5.21) is small,
this can straightaway be seen to lead to a linearized theory of General Rela-
tivity [5]. Exactly as in standard literature we could now deduce the General
Relativistic relation

∂λ∂λhµν − (∂λ∂νhµλ + ∂λ∂µhνλ)

−ηµν∂λ∂λh + ηµν∂λ∂σhλσ = −kT̄µν (5.22)

It must be mentioned that the energy momentum type term on the right
side of (5.22) arises due to the fact that the derivatives ∂λ and ∂µ no longer
commute and this leads to an additional contribution as can be verified from
the left side of (5.22). To show this special origin of the right side term,
we have used T̄ instead of the usual T . More explicitly, it follows from the
foregoing that (Cf.ref.[162])

∂

∂xλ

∂

∂xµ
− ∂

∂xµ

∂

∂xλ
goes over to

∂

∂xλ
Γ ν

µνΓ − ∂

∂xµ
Γ ν

λνΓ (5.23)

Normally in conventional theory the right side of (5.23) would vanish. Let us
designate this non vanishing part on the right by

e

ch̄̄
Fµλ (5.24)

We have shown here that the non commutativity in momentum components
leads to an effect that can be identified with electromagnetism and infact
from expression (5.24) we have

Aµ = hΓ¯̄ µν
νΓΓ (5.25)

where Aµ can be identified with the electromagnetic four potential (Cf.also
ref.[24]). To see this in the light of the usual gauge invariant minimum cou-
pling (Cf.ref.[24]), we start with the effect of an infinitesimal parallel dis-
placement of a vector in this non commutative geometry,

δaσ = −Γ σ
µνΓ aµdxν (5.26)

As is well known, (5.26) represents the effect due to the curvature and non
integrable nature of space - in a flat space, the right side would vanish. Con-
sidering the partial derivatives with respect to the µth coordinate, this would
mean that, due to (5.26)

∂aσ

∂xµ
→ ∂aσ

∂xµ
− Γ σ

µνΓ aν (5.27)

Letting aµ = ∂µφ,, we have, from (5.27)
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Dµν ≡ ∂ν∂µ → D′
µν ≡ ∂ν∂µ − Γµ

λνΓ ∂λ

= − Γµ
λνΓ ∂λ (5.28)

Now we can also write

Dµν = (∂µ − Γµ
λλΓ )(∂ν − Γλ

λνΓ ) + ∂µΓλ
λνΓ + Γµ

λλΓ ∂ν

So we get
Dµν − Γµ

λλΓ ∂ν = (pµ)(pν)

where
pµ ≡ ∂µ − Γµ

λλΓ

Or,
Dµµ − Γµ

λλΓ ∂µ = (pµ)(pµ)

Further we have
D′

µµ = Dµµ − Γµ
λµΓ ∂λ

Thus, (28) gives, finally,
D′

µν = (pµ)(pν)

That is we have
∂

∂xµ
→ ∂

∂xµ
− Γ ν

µνΓ

Comparison with (5.25) establishes the required identification.
It is quite remarkable that equation (5.25) is once again mathematically iden-
tical to Weyl’s unified formulation, which we saw in the previous section,
though this was not originally acceptable because of the adhoc insertion of
the electromagnetic potential. Here in our case it is a consequence of the
noncommutative geometry (Cf.refs.[24] and [163] for a detailed discussion).
We can see this in even greater detail as follows. The gravitational field equa-
tions can be written as [5]

Dφµν = −kT̄µν (5.29)

where
φµν = hµν − 1

2
ηµνh (5.30)

and D is the D’Alembertian.
It also follows, if we use the usual gauge and equation (5.25) that

∂µhµν = Aν (5.31)

in this linearised theory.
Whence, remembering that we have (5.21), operating on both sides of equa-
tion (5.29) with ∂µ we get Maxwell’s equations of electromagnetism on using
(5.30) and (5.31).

Dµν
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This is not surprising because as is well known if equation (5.25) holds as in
the Weyl formulation, then in the absence of matter the general relativistic
field equations (5.22) reduce to Maxwell equations [6]. In any case, all this
provides a rationale for the fact that from (5.29) we get the equation for
spin 2 gravitons (Cf.ref.[5]) while from the Maxwell equations, we have spin
1 (vector) photons. We will return to this point in Chapter 7.

5.5 The Planck Scale

As we have seen, and this as noted being true in Quantum Gravity as well as
in Quantum Super String Theory, we encounter phenomena at a minimum
scale. It is well known, and this was realized by Planck himself, that there is
an absolute minimum scale in the Universe, and this is,

lP =
(

hG¯̄
c3

) 1
2

∼ 10−33cm

tP =
(

hG¯̄
c5

) 1
2

∼ 10−42sec (5.32)

Yet what we encounter in the real world is, not the Planck scale, but the
elementary particle Compton scale. The explanation given for this is that the
very high energy Planck scale is moderated by the Uncertainty Principle. The
question which arises is, exactly how does this happen? We will now present
an argument to show how the Planck scale leads to the real world Compton
scale, via fluctuations and the modification of the Uncertainty Principle.
We note that (5.32) defines the absolute minimum physical scale [163, 164,
23, 165]. Associated with (5.32) is the Planck mass

mP ∼ 10−5gm (5.33)

There are certain interesting properties associated with (5.32) and (5.33).
lP is the Schwarzchild radius of a Black Hole of mass mP while tP is the
evaporation time for such a Black Hole via the Beckenstein Radiation [166].
Interestingly tP is also the Compton time for the Planck mass, a circumstance
that is symptomatic of the fact that at this scale, electromagnetism and
gravitation become of the same order [24]. Indeed all this fits in very well with
Rosen’s analysis that such a Planck scale particle would be a mini Universe
[47, 65]. We will now invoke a time varying gravitational constant (to be
discussed in detail in Chapters 6 and 8.)

G ≈ lc2

m
√

N
α(

√
Nt)−1 = T−1 (5.34)

which resembles the Dirac cosmology and features in another scheme to be
discussed in the next Chapter, in which (5.34) arises due to the fluctuation in
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the particle number [167, 168, 169, 170, 24]. In (5.34) m and l are the mass
and Compton wavelength of a typical elementary particle like the pion while
N ∼ 1080 is the number of elementary particles in the Universe, and T is the
age of the Universe.
In this scheme wherein as we shall see in Chapter 6, (5.34) follows from the
theory, we use the fact that given N particles, the fluctuation in the particle
number is of the order

√
N , while a typical time interval for the fluctuations

is ∼ h/mc¯̄ 2, the Compton time. We will come back to this point later. So
anticipating later work we have

dN

dt
=

√
N

τ

whence on integration we get,

T =
h̄̄

mc2

√
N

and we can also deduce its spatial counterpart, R =
√

Nl, which is the well
known empirical Eddington formula. We will return to this later.
Equation (5.34) which is an order of magnitude relation is consistent with
observation [171, 172] while it may be remarked that the Dirac cosmology
itself has inconsistencies.
Substitution of (5.34) in (5.32) yields

l = N
1
4 lP ,

t = N
1
4 tP (5.35)

where t as noted is the typical Compton time of an elementary particle. We
can easily verify that (5.35) is correct. It must be stressed that (5.35) is not a
fortuitous empirical coincidence, but rather is a result of using (5.34), which
again as noted, can be deduced from theory.
(5.35) can be rewritten as

l =
√

nlP

t =
√

ntP (5.36)

wherein we have used (5.32) and (5.34) and n =
√

N .
We will now compare (5.36) with the well known relations, referred to earlier,

R =
√

Nl T =
√

Nt (5.37)

The first relation of (5.37) is the well known Weyl-Eddington formula referred
to while the second relation of (5.37) is given also on the right side of (5.34).
We now observe that (5.37) can be seen to be the result of a Brownian Walk
process, l, t being typical intervals between ”steps” (Cf.[24, 173, 174]). We
demonstrate this below after equation (5.39). On the other hand, the typical
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intervals l, t can be seen to result from a diffusion process themselves. Let us
consider the well known diffusion relation,

(∆x)2 ≡ l2 =
h̄̄

m
t ≡ h̄̄

m
∆t (5.38)

(Cf.[173],[175]-[177]). What is being done here is that we are modelling fuzzy
spacetime by a double Wiener process to be touched upon later, which leads
to (5.38). This will be seen in more detail, below.
Indeed as l is the Compton wavelength, (5.38) can be rewritten as the Quan-
tum Mechanical Uncertainty Principle

l · p ∼ h̄̄

at the Compton scale (Cf. also [178]) (or even at the De Broglie scale).
What (5.38) shows is that a Brownian process defines the Compton scale
while (5.37) shows that a Random Walk process with the Compton scale as
the interval defines the length and time scales of the Universe itself (Cf.[174]).
Returning now to (5.36), on using (5.33), we observe that in complete analogy
with (5.38) we have the relation

(∆x)2 ≡ l2P =
h̄̄

mP
tP ≡ h̄̄

mP
∆t (5.39)

We can now argue that the Brownian process (5.39) defines the Planck length
while a Brownian Random Walk process with the Planck scale as the interval
leads to (5.36), that is the Compton scale.
To see all this in greater detail, it may be observed that equation (5.39)
(without subscripts)

(∆x)2 =
h̄̄

m
∆t (5.40)

is the same as the equation (5.38), indicative of a double Wiener process.
Indeed as noted by several scholars, this defines the fractal Quantum path of
dimension 2 (rather than dimension 1) (Cf.e.g. ref.[176]).
Firstly it must be pointed out that equation (5.40) defines a minimum space-
time unit - the Compton scale (l, t). This follows from (5.40) if we substitute
into it 〈∆x

∆t 〉max = c. If the mass of the particle is the Planck mass, then this
Compton scale becomes the Planck scale.
Let us now consider the distance traversed by a particle with the speed of
light through the time interval T . The distance R covered would be∫

dx = R = c

∫
dt = cT (5.41)

by conventional reasoning. In view of the equation (5.40), however we would
have to consider firstly, the minimum time interval t (Compton or Planck
time), so that we have
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dt → nt (5.42)

Secondly, because the square of the space interval ∆x (rather than the interval
∆x itself as in conventional theory) appears in (5.40), the left side of (5.41)
becomes, on using (5.42)∫

dx2 →
∫

(
√

ndx)(
√

ndy) (5.43)

Whence for the linear dimension R we would have
√

nR = nct or R =
√

nl (5.44)

Equation (5.43) brings out precisely the fractal dimension D = 2 of the
Brownian path while (5.44) is identical to (5.35) or (5.37) (depending on
whether we are dealing with minimum intervals of the Planck scale or Comp-
ton scale of elementary particles). Apart from showing the Brownian char-
acter linking equations (5.35) and (5.40), incidentally, this also provides the
justification for what has so far been considered to be a mysterious Large
Number coincidence viz. the Eddington formula (5.37).
There is another way of looking at this. It is well known that in approaches
like that of the author or Quantum Super String Theory, at the Planck scale
we have a non commutative geometry encountered earlier [179, 162] Indeed
as noted, (5.3) follows without recourse to Quantum Superstrings, merely by
the fact that lP , tP are the absolute minimum space time intervals as we saw
earlier.
The non commutative geometry (5.3), as is known, is symptomatic of a Mod-
ified Uncertainty Principle at this scale [180]-[184]

∆x ≈ h̄̄

∆p
+ l2P

∆p

h̄̄
(5.45)

The relation (5.45) would be true even in Quantum Gravity. The extra or
second term on the right side of (5.45) as noted in Chapter 3 expresses the
well known duality effect - as we attempt to go down to the Planck scale,
infact we are lead to the larger scale. The question is, what is this larger
scale? If we now use the fact that

√
n is the fluctuation in the number of

Planck particles (exactly as
√

N was the fluctuation in the particle number
as in (5.34)) so that

√
nmpc = ∆p is the fluctuation or uncertainty in the

momentum for the second term on the right side of (5.45), we obtain for the
uncertainty in length,

∆x = l2P

√
nmP c

h̄̄
= lP

√
n, (5.46)

We can easily see that (5.46) is the same as the first relation of (5.36). The
second relation of (5.36) follows from an application of the time analogue of
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(5.45).
Thus the impossibility of going down to the Planck scale because of (5.3)
or (5.45), manifests itself in the fact that as we attempt to go down to the
Planck scale, we infact end up at the Compton scale. In the next section we
will give another demonstration of this result. This is how the Compton scale
is encountered in real life.
Interestingly while at the Planck length, we have a life time of the order of
the Planck time, as noted above it is possible to argue on the other hand
that with the mass and length of a typical elementary particle like the pion,
at the Compton scale, we have a life time which is the age of the Universe
itself as shown by Sivaram [166, 185].
Interestingly also Ng and Van Dam deduce the relations like [186]

δL ≤ (Ll2P )1/3, δT ≤ (Tt2P )1/3 (5.47)

where the left side of (5.47) represents the uncertainty in the measurement
of length and time for an interval L, T . We would like to point out that if in
the above we use for L, T , the size and age of the Universe, then ∆L and ∆T
reduce to the Compton scale l, t.
In conclusion, Brownian double Wiener processes and the modification of the
Uncertainty Principle at the Planck scale lead to the physical Compton scale.

5.6 The Universe as Planck Oscillators

In the previous section, we had argued that a typical elementary particle like
a pion could be considered to be the result of n ∼ 1040 evanescent Planck
scale particles. We will return to this line of thinking again particularly in
Chapter 8. The argument was based on random motions and also on the
modification to the Uncertainty Principle. We will now consider the problem
from a different point of view, which not only reconfirms the above result,
but also enables an elegant extension to the case of the entire Universe itself.
Let us consider an array of N particles, spaced a distance ∆x apart, which
behave like oscillators, that is as if they were connected by springs. We then
have [187, 188]

r =
√

N∆x2 (5.48)

ka2 ≡ k∆x2 =
1
2
kBT (5.49)

where kB is the Boltzmann constant, T the temperature, r the extent and k
is the spring constant given by

ω2
0 =

k

m
(5.50)
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ω =
(

k

m
a2

) 1
2 1

r
= ω0

a

r
(5.51)

We now identify the particles with Planck masses, set ∆x ≡ a = lP , the
Planck length. It may be immediately observed that use of (5.50) and (5.49)
gives kBT ∼ mP c2, which ofcourse agrees with the temperature of a Black
Hole of Planck mass. Indeed, as noted, Rosen had shown that a Planck mass
particle at the Planck scale can be considered to be a Universe in itself. We
also use the fact alluded to that a typical elementary particle like the pion
can be considered to be the result of n ∼ 1040 Planck masses. Using this in
(5.48), we get r ∼ l, the pion Compton wavelength as required. Further, in
this latter case, using (5.48) and the fact that N = n ∼ 1040, and (5.49),i.e.
kBT = kl2/N and (5.50) and (5.51), we get for a pion, remembering that
m2

P /n = m2,

kBT =
m3c4l2

h̄̄2 = mc2,

which of course is the well known formula for the Hagedorn temperature for
elementary particles like pions. In other words, this confirms the conclusions
in the previous section, that we can treat an elementary particle as a series of
some 1040 Planck mass oscillators. However it must be observed from (5.49)
and (5.50), that while the Planck mass gives the highest energy state, an
elementary particle like the pion is in the lowest energy state. This explains
why we encounter elementary particles, rather than Planck mass particles in
nature. Infact as already noted [24], a Planck mass particle decays via the
Beckenstein Radiation within a Planck time ∼ 10−42secs. On the other hand,
the lifetime of an elementary particle would be very much higher.
In any case the efficacy of our above oscillator model can be seen by the
fact that we recover correctly the masses and Compton scales in the order of
magnitude sense and also get the correct Beckenstein and Hagedorn formulas
as seen above, and get the correct estimate of the mass of the Universe itself,
as will be seen below.
Using the fact that the Universe consists of N ∼ 1080 elementary particles
like the pions, the question is, can we think of the Universe as a collection of
nN or 10120 Planck mass oscillators? This is what we will now show. Infact if
we use equation (5.48) with

N̄ ∼ 10120,

we can see that the extent r ∼ 1028cms which is of the order of the diameter
of the Universe itself. Next using (5.51) we get

hω¯̄ (min)
0 〈 lP

1028
〉−1 ≈ mP c2 × 1060 ≈ Mc2 (5.52)

which gives the correct mass M , of the Universe which in contrast to the
earlier pion case, is the highest energy state while the Planck oscillators in-
dividually are this time the lowest in this description. In other words the
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Universe itself can be considered to be described in terms of normal modes
of Planck scale oscillators.
We will return to these considerations later: this and the preceding consider-
ations merely set the stage.

5.7 Modelling Fuzzy Spacetime as a Double Wiener
Process

As noted earlier, fuzzy spacetime or complexification of coordinates could be
modelled by a double Wiener process. Here, we have to consider the forward
and backward time derivatives [176] which are unequal,

d

dt+
,

d

dt−

For simplicity we consider the problem in one space dimension to start with.
So we have

d

dt+
x(t) = b+,

d

dt−
x(t) = b−, (5.53)

From (5.53) we define two new velocities

V =
b+ + b−

2
, U =

b+ − b−
2

(5.54)

It may be pointed out that in the absence of the double Wiener process, U
given in (5.54) vanishes while V gives the usual velocity. It is now possible
to introduce a complex velocity

W = V − ıU (5.55)

Once the complex velocity W is introduced, we can then add and subtract
the two Fokker-Planck equations

∂ρ/∂t + div(ρb1) = D∆ρ,

∂ρ/∂t + div(ρb−) = −D∆ρ,

to get
∂ρ/∂t + div(ρV ) = 0,

the equation of continuity, and

div(ρU) − D∆ρ = 0,

where it can be shown that

U = D∇lnρ,
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In the above ρ is the probability density and D is the diffusion constant.
Thence it is possible to lead up to the Schrödinger equation, where¨ ψ =√

ρeıS , S being related to the velocity V by

V = 2D∇S

(cf.ref.[176] for details), which means that, from the above classical consid-
erations of the diffusion equation, we arrive at the Quantum Mechanical
equation.
From (5.55) it appears that the consequence of the above theory or equations
(5.53) to (5.55) is that the coordinate x goes over into a complex coordinate

x → x + ıx′ (5.56)

To see this in detail, let us rewrite (5.54) as

dXr

dt
= V,

dXı

dt
= U, (5.57)

where we have introduced a complex coordinate X with real and imaginary
parts Xr and Xı, while at the same time using derivatives with respect to
time as in conventional theory.
We can now see from (5.55) and (5.57) that

W =
d

dt
(Xr − ıXı) (5.58)

That is, in this non relativistic development either we use forward and back-
ward time derivatives and the usual space coordinate as in (5.53), or we use
the derivative with respect to the usual time coordinate but introduce com-
plex space coordinates as in (5.56).
However, unlike in the Nelsonian theory, in which the above considerations
were shown to lead to the Schrodinger equation, we have taken (5.56) as a¨
starting point for a generalization to three, but as it turns out, actually four
dimensions and non commutative spacetime as seen earlier.
Finally, it may be remarked that the original Nelsonian theory itself has been
criticized by different scholars [189]-[193].

5.8 Other Issues

1. In Dirac’s theory of displacement operators [7] the operator dx ≡ d
dx is a

purely imaginary operator, and is given by

δx(dx + d̄x) = δx2dxd̄x = 0

if
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0(δx2) = 0

as is tacitly assumed. However if

0(δx2) = 0 (5.59)��
then the operator dx becomes complex, and therefore, also the momentum
operator, px ≡ ıhd¯̄ x and the position operator. In other words if (5.59) holds
good then we have to deal with complex or non-Hermitian coordinates. The
implication of this is that (Cf.[161] for details) spacetime becomes non- com-
mutative as seen in earlier sections.
In any case here is the mysterious origin of the complex coordinates and spin.
The complex coordinates lead to the Kerr-Newman metric and the electron’s
field including the anomalous gyro magnetic ratio which are symptomatic of
the electron’s spin. It also means that the naked singularity is shielded by the
fuzzy spacetime (Dirac’s original averages over the zitterbewegung interval)
or equivalently the noncommutative geometry (5.4) (Cf. also [108]).
2. Ever since Dirac deduced theoretically the existence of the monopole in
1931, it has eluded physicists [194, 99]. At the same time the possibility
of realising huge amounts of energy using monopoles has been an exciting
prospect. In 1980 when the fiftieth Anniversary of the monopole was being
commemorated, Dirac himself expressed his belief that the monopole did not
exist [195]. Some scholars have indeed dismissed the monopole [196, 197],
while in a model based on quantized vortices in the hydrodynamical formula-
tion, the monopole field can be mathematically identified with the momentum
vector [24]. Monopoles had also been identified with solitons [106].
In any case, it has been noted that the existence of free monopoles would
lead to an unacceptably high density of the Universe [196], which in the light
of latest observations of eternal expansion [206, 207] would be difficult to
reconcile.
We will now show that monopoles arise due to the non commutative struc-
ture of spacetime being ignored, and this would also provide an explanation
for their being undetected.
Let us start by reviewing Dirac’s original derivation of the monopole
(Cf.ref.[99]). He started with the wave function

ψ = Aeıγ , (5.60)

He then considered the case where the phase γ in (5.60) is non integrable. In
this case (5.60) can be rewritten as

ψ = ψ1e
ıS , (5.61)

where ψ1 is an ordinary wave function with integrable phase, and further,
while the phase S does not have a definite value at each point, its four gradient
viz.,

Kµ = ∂µS (5.62)
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is well defined. We use temporarily natural units, h̄̄̄ = c = 1. Dirac then goes
on to identify K in (5.62) (except for the numerical factor hc/e) with the
electromagnetic field potential, as in the Weyl gauge invariant theory.
Next Dirac considered the case of a nodal singularity, which is closely related
to what was later called a quantized vortex (Cf. for example ref.[198]). In
this case a circuit integral of a vector as in (5.62) gives, in addition to the
electromagnetic term, a term like 2πn, so that we have for a change in phase
for a small closed curve around this nodal singularity,

2πn + e

∫
B · dS (5.63)

In (5.63) B is the magnetic flux across a surface element dS and n is the
number of nodes within the circuit. The expression (5.63) directly leads to
the monopole.
Let us now reconsider the above arguments in terms of recent developments.
The Dirac equation for a spin half particle throws up as we saw a complex or
non Hermitian position coordinate. Dirac as noted identified the imaginary
part with zitterbewegung effects and argued that this would be eliminated
once it is realized that in Quantum Mechanics, spacetime points are not
meaningful and that on the contrary averages over intervals of the order of the
Compton scale have to be taken to recover meaningful physics [7]. Over the
decades the significance of such cut off spacetime intervals has been stressed
by T.D. Lee and several other scholars as noted earlier [24, 152, 120, 116].
Indeed with a minimum cut off length l, it was shown that there would be
a non commutative spacetime structure, and infact at the Compton scale we
would have, as in (5.4),

[x, y] = 0(l2) (5.64)

and similar relations.
In fact starting from the Dirac equation itself, we can deduce directly the
non commutativity (5.64) as we saw in Section 2.
Let us now return to Dirac’s formulation of the monopole in the light of the
above comments. As noted above, the non integrability of the phase S in
(5.61) gives rise to the electromagnetic field, while the nodal singularity gives
rise to a term which is an integral multiple of 2π. As is well known [173] we
have

∇S = p (5.65)

where p is the momentum vector. When there is a nodal singularity, as noted
above the integral over a closed circuit of p does not vanish. In fact in this
case we have a circulation given by

Γ =
∮

∇S · dr = h̄̄

∮
dS = 2πn (5.66)

It is because of the nodal singularity that though the p field is irrotational,
there is a vortex - the singularity at the central point associated with the
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vortex makes the region multiply connected, or alternatively, in this region
we cannot shrink a closed smooth curve about the point to that point. In fact
if we use the fact as seen above that the Compton wavelength is a minimum
cut off, then we get from (5.66) using (5.65), and on taking n = 1,∮

∇S · dr =
∫

p · dr = 2πmc
l

2mc
=

h

2
(5.67)

(l = h̄̄
2mc is the radius of the circuit and h = 2π in the above natural units). In

other words the nodal singularity or quantized vortex gives us the mysterious
Quantum Mechanical spin half (and other higher spins for other values of
n). In the case of the Quantum Mechanical spin, there are 2 × n/2 + 1 =
n+1 multiply connected regions, exactly as in the case of nodal singularities.

Indeed in the case of the Dirac wave function, which is a bi-spinor
(

Θ
φ

)
,

as we saw, far outside the Compton wavelength, it is the usual spinor Θ,
preserving parity under reflections that predominates, whereas at and near
the Compton scale it is the spinor φ which predominates, where under a
reflection φ goes over to −φ. This double connectivity of the Dirac spinor
was shown to lead immediately to the same electromagnetic potential we
had obtained from the nonintegrability of the phase above, which again was
identical to that from Weyl’s gauge invariant theory.
As we saw in Section 4, given nonintegrability, we have

∂

∂xµ
→ ∂

∂xµ
− Γ ν

µνΓ (5.68)

We can identify
Aµ = Γ ν

µνΓ (5.69)

from the above using minimum electromagnetic coupling exactly as in Dirac’s
monopole theory.
If we use (5.68), we will get, the commutator relation, as seen in Section 4,

∂

∂xλ

∂

∂xµ
− ∂

∂xµ

∂

∂xλ
→ ∂

∂xλ
Γ ν

µνΓ − ∂

∂xµ
Γ ν

λνΓ (5.70)

Let us now use (5.69) in (5.70): The right side does not vanish due to the
electromagnetic field (5.69) and we have a non-commutativity of the momen-
tum components of Quantum Theory. Indeed the left side of (5.70) can be
written as

[p[[ λ, pµ] ≈ 0(1)
l2

, (5.71)

l being the Compton wavelength. In (5.71) we have utilized the fact that
at the extreme scale of the Compton wavelength, the Planck scale being a
special case, the momentum is mc.
From (5.69), (5.70) and (5.71), we have,
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Bl2 ∼ 1
e

=
(

hc¯̄
e

)
, (5.72)

where B is the magnetic field.
Equation (5.72) is the well-known equation for the magnetic monopole. In-
deed it has been shown by Saito and the author [194, 199] that a non com-
mutative spacetime at the extreme scale shows up as a powerful magnetic
field.
To recapitulate, the monopole was shown by Dirac to arise because of two
separate issues. The first was the non integrability of the phase S given in
(5.61), which gave rise to the electromagnetic potential on the lines of the
Weyl potential (5.69) (which latter was dismissed because it was adhoc).
The other issue was that of nodal singularities or alternatively the multiply
connected nature of space which gave rise to a term like 2πn as in (5.63).
In effect there would be free monopoles. However all this was considered in
the context of the usual commutative Minkowski spacetime. Effectively this
means that terms ∼ 0(l2) as in (5.64) are neglected.
However once such terms are included, in other words once the non commu-
tative structure of spacetime to this order is recognized, firstly the previously
supposedly adhoc Weyl electromagnetic formulation automatically follow as
in (5.69) and furthermore the first term in the monopole expression (5.63)
immediately gives the Quantum Mechanical spin, and the elusive monopole
appears as the spin and the magnetic effect at the Compton (or Planck scale).
Indeed in recent times the fact that non commutative spacetime gives rise to
spin has, as noted, been recognized.
3. One could argue that the non commutative relations are an expression of
Quantum Mechanical spin. To put it briefly, for a spinning particle the non
commutativity arises when we go from canonical to covariant position vari-
ables. As mentioned Zakrzewski [156] has shown that we have the Poisson
bracket relation

{xj , xk} =
1

m2
Rjk, (c = 1),

where Rjk is the spin.
4. The characterization of the metric in terms of symmetric and non symmet-
ric components as seen in Section 4 is similar to the torsional formulation of
General Relativity [200]. However in this latter case, there is no contribution
to the differential interval from the torsional (that is non commutative) ef-
fects. The non commutative contribution is there, however, and herein comes
the extended, rather than point like particle.
In any case the indicated attempt at unification of electromagnetism and
gravitation had made part headway, but unless the underpinning of a non
commutative geometry is recognized, the full significance does not manifest
itself. We will return to this in Chapter 8.
5. We reiterate that the minimum spacetime intervals are at or below the
Compton scale where the momentum p equals mc. For a Planck mass
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∼ 10−5gms, this is also the Planck scale, as in Quantum Superstring the-
ory.
In Snyder’s original work, the commutation relations hold good outside the
minimum spacetime intervals, and are Lorentz invariant. This is quite pleas-
ing because in any case, even in Quantum Field Theory, we use Minkowski
spacetime.
6. The above non commutative geometry also holds the key to the myste-
rious extra dimensions of Quantum Superstrings. This has been discussed
in detail in references [24, 101]. But to see in a simple way, we note that
the coordinates y and z show up as some sort of a momenta, though with
a different dimensional multiplying constant as the analogue of the Planck
constant. That is instead of the single x momentum, px, we have two extra
“momenta”, this being the same for the y and z momenta also. This leads
to the well known 9 + 1 dimensions of Quantum Superstrings, though be-
cause for all these extra “momenta”, the multiplying factor, the analogue of
the Planck constant is different, so these extra dimensions are suppressed or
curled up in the Kaluza-Klein sense.
7. A concept which one encounters in Quantum Super String theory and
more generally in the presence of the non commutative geometry is that of
duality. We will briefly examine this now and see its significance in relation
to electrodynamic theory. In fact as we saw in (5.45) we have [17, 23],

∆x ∼ h̄̄

∆p
+ α′∆p

h̄̄
(5.73)

where α′ = l2, which in Quantum Superstrings Theory ∼ 10−66cm2. This is
an expression of the duality relation,

R → α′/R

This is symptomatic of the fact that we cannot go down to arbitrarily small
spacetime intervals, below the Planck scale in this case but that the macro
Universe is connected with the micro Universe or in Witten’s words, “when
one accelerates past the string scale - instead of probing short distances one
just watches the propagation of large strings.” (Cf.ref.[17]).
In this light, an interesting meaning to the duality relation arising from (5.73)
has been discussed in [102, 173].
We will now see a curious connection between the forgoing micro-macro link
with the apparently disparate concept of the Feynman-Wheeler action at a
distance theory, which had been quite successful.
Our starting point is the so called Lorentz-Dirac equation [201]:

maµ = Fµ
inFF + Fµ

extFF + Γµ (5.74)

where
Fµ

inFF =
e

c
Fµν

inFF vν
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and similarly
Fµ

extFF =
e

c
Fµν

extFF vν

and Γµ is the Abraham radiation reaction four vector related to the self force
and, given by

Γµ =
2
3

e2

c3
(ȧµ − 1

c2
aλxλvµ) (5.75)

Equation (5.74) is the relativistic generalization for a point electron of an
earlier equation proposed by Lorentz, while equation (5.75) is the relativistic
generalization of the original radiation reaction term due to energy loss by
radiation. It must be mentioned that the mass m in equation (5.74) consists
of a neutral mass and the original electromagnetic mass of Lorentz, which
latter does tend to infinity as the electron radius → 0. We thus have here the
forerunner of renormalisation in Quantum Theory.
There are three unsatisfactory features of the Lorentz-Dirac equation (5.74).
Firstly the third derivative of the position coordinate in (5.74) through Γµ

gives a whole family of solutions. Except one, the rest of the solutions are run
away - that is the velocity of the electron increases with time to the velocity
of light, even in the absence of any forces. This energy can be thought to come
from the infinite self energy we get when the size of the electron shrinks to
zero. If we assume adhoc an asymptotically vanishing acceleration then we
get a physically meaningful solution, though this leads to a second difficulty,
that of violation of causality of even the physically meaningful solutions.
It has been shown in detail elsewhere (Cf. [202] that these acausal, non local
effects take place within the Compton time. In any case, the Quantum Me-
chanical Compton scale is a region of non local acausal effects, as noted.
We now come to the Feynman-Wheeler action at a distance theory [203, 204].
They showed that the apparent acausality of the theory would disappear if
the interaction of a charge with all other charges in the Universe, such that
the remaining charges would absorb all local electromagnetic influences was
considered. The rationale behind this was that in an action at a distance
context, the motion of a charge would instantaneously affect other charges,
whose motion in turn would instantaneously affect the original charge. Thus
considering a small interval in the neighbourhood of the point charge, they
deduced,

Fµ
retFF =

1
2
{Fµ

retFF + Fµ
advF } +

1
2
{Fµ

retFF − Fµ
advF } (5.76)

The left side of (5.76) is the usual causal field, while the right side has two
terms. The first of these is the time symmetric field while the second can
easily be identified with the Dirac field above and represents the sum of
the responses of the remaining charges calculated in the vicinity of the said
charge. Also here it can be shown that we encounter effects within the Comp-
ton scale (Cf.ref.[202]). We thus return to the concept, from a theory based
on relations of extended particles and duality, of a manifestation of holism:
The original instantaneous action at a distance theory has been shown to
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lead to the minimum Compton scale concept and this will be shown to be a
result of cosmic fluctuations in Chapter 8.



6 THE UNIVERSE OF FLUCTUATIONS

“Our physical world ... is a world of instabilities and fluctuations ...”

I. Prigogine

6.1 The “Old” Cosmology

The Newtonian Universe was one in which there was an absolute background
space in which the basic building blocks of the Universe were strewn about–
these were stars. This view was a quantum jump from the earlier view, based
on the Greek model in which stars and other celestial objects were attached
to transparent material spheres, which prevented them from falling down.
When Einstein proposed his General Theory of Relativity early in the last
century, the accepted picture of the Universe was one where all major con-
stituents were stationary. This had puzzled Einstein, because the gravita-
tional pull of these constituents should make the Universe collapse. So he
invented his famous cosmological constant, essentially a repulsive force that
would counterbalance the attractive gravitational force.
Shortly thereafter there were two dramatic discoveries which completely al-
tered that picture. The first was due to astronomer Edwin Hubble, who dis-
covered that the basic constituents or building blocks of the Universe were
not stars, but rather, huge conglomerations of stars called galaxies. The sec-
ond discovery was the fact that these galaxies are rushing away from each
other – far from being static, the Universe was exploding. There was no need
for the counterbalancing cosmic repulsion any more and Einstein dismissed
this as his greatest blunder.
Over the next forty odd years, these observations evolved into the Big Bang
theory, according to which all the matter in the Universe, possibly some 13.7
billion years ago, was concentrated in a speck, at the birth of the Universe,
which was characterized by an inconceivable explosion or bang. This lead to
the matter being flung outwards, and that is what keeps the galaxies rush-
ing outwards even today. In the mid sixties confirmation for the Big Bang
model of the Universe came from the detection of a cosmic footprint. The
energy of the initial Big Bang would today still be available in the form of
cosmic microwaves, which accidentally were discovered as we saw in Chapter

73
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2 [46, 59, 5].
Over the next three decades and more, the Big Bang theory was refined fur-
ther and further. An important question was, would the Universe continue
to expand for ever, though slowing down, or would the expansion halt one
day and the Universe collapse back again? Much depended on the material
content or density of the Universe. If there was enough matter, and therefore
gravitation, then the expansion would halt and reverse. If not the Universe
would expand for ever. However the observed material content, more correctly
density, of the Universe appeared to be insufficient to halt the expansion.
At the same time there were a few other intriguing observations. For example
the velocities within galaxies, instead of sharply falling off with distance from
their centres, flattened out. All this led astronomers to invoke Dark Matter,
that is as yet undetected and possibly exotic matter. This matter could be in
the form of Black Holes within galaxies, or brown dwarf stars which were too
faint to be detected, or even massive neutrinos which were otherwise thought
to be massless or who knows what. With Dark Matter thrown in, it appeared
that the Universe had sufficient material content to halt, and even reverse
the expansion. That is, the Universe would expand up to a point and then
collapse.
There still were several subtler problems to be addressed. One was the fa-
mous horizon problem. To put it simply the Big Bang was an uncontrolled
or random event and so, different parts of the Universe in different directions
were disconnected at the very earliest stage and even today, light would not
have had enough time to connect them. So today they need not be the same,
just as people in different parts of the world need not share the same habits or
dress. Observation however shows that the Universe is by and large uniform,
rather like people in different countries showing the same habits or dress.
That would not be possible without some form of intercommunication which
would violate Einstein’s Special Theory of Relativity, according to which no
signal can travel faster than light.
The next problem was, that according to Einstein, due to the material content
in the Universe, space should be curved whereas the Universe appears to be
flat. There were other problems as well. For example astronomers predicted
that there should be the monopoles encountered earlier, that is, simply put,
either only North magnetic poles or only South magnetic poles, unlike the
North South combined magnetic poles we encounter. Such monopoles have
failed to show up.
Some of these problems as we briefly saw were sought to be explained by
what has been called inflationary cosmology whereby, early on, just after the
Big Bang the explosion was super fast [73, 205].
What would happen in this case is, that different parts of the Universe, which
could not be accessible by light, would now get connected. At the same time,
the super fast expansion in the initial stages would smoothen out any dis-
tortion or curvature effects in space, leading to a flat Universe and in the
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process also eliminate the monopoles.
One other feature that has been studied in detail over the past few decades
is that of structure formation in the Universe. To put it simply, why is the
Universe not a uniform spread of matter and radiation? On the contrary it
is very lumpy with planets, stars, galaxies and so on, with a lot of space
separating these objects. This has been explained in terms of fluctuations in
density, that is, accidentally more matter being present in a given region.
Gravitation would then draw in even more matter and so on. These fluctu-
ations would also cause the cosmic background radiation to be non uniform
or anisotropic. Such anisotropies are in fact being observed.
From early 1998, the conventional wisdom of cosmology that had concretized
from the mid sixties onwards, began to be challenged. It had been believed
that the density of the Universe is near its critical value, separating eternal
expansion and ultimate contraction, while the nuances of the Dark Matter
theories were being fine tuned. However the work of Perlmutter and others
[206, 207] began appearing in 1998 and told a different story. These observa-
tions of distant supernovae indicated that contrary to widely held belief, the
Universe was not only not decelerating, it was actually accelerating.
This paradigm shift permeated to the popular press too. For example an ar-
ticle in the Scientific American [208] observed, ”In recent years the field of
cosmology has gone through a radical upheaval. New discoveries have chal-
lenged long held theories about the evolution of the Universe... Now that
observers have made a strong case for cosmic acceleration, theorists must
explain it.... If the recent turmoil is anything to go by, we had better keep
our options open.”
On the other hand, the Physics World observed [209], ”A revolution is tak-
ing place in cosmology. New ideas are usurping traditional notions about the
composition of the Universe, the relationship between geometry and destiny,
and Einstein’s greatest blunder.”
The infamous cosmological constant was resurrected and now it was ”dark
energy” that was in the air, rather than Dark Matter.
Shortly before these dramatic discoveries, the author had presented a cosmo-
logical model based on fluctuations in an all permeating Zero Point Field - or
dark energy [210, 211, 168, 169]. This model while consistent with astrophysi-
cal observations, predicted an ever expanding and accelerating Universe with
a small cosmological constant. It deduces from theory the so called Large
Number coincidences including the purely empirical Weinberg formula that
connects the pion mass to the Hubble constant [80, 28] – ”coincidences” that
have troubled and mystified scientists from time to time. Let us now exam-
ine this cosmology and some of its implications. We will first go over the
essentials and then examine the nuances.
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6.2 Dark Energy and Fluctuations

We first observe that the concept of a Zero Point Field (ZPF) or Quantum
Vacuum (or Aether) is an idea whose origin can be traced back to Max Planck
himself. Quantum Field Theory attributes the ZPF to the virtual Quantum
effects of an already present electromagnetic field [29]. What is the mysteri-
ous energy of supposedly empty vacuum?
It may sound contradictory to attribute energy or density to the vacuum.
After all vacuum is a total void. However, over the past four hundred years,
it has been realized that it may be necessary to replace the vacuum by a
medium with some specific physical properties. For instance Descartes the
seventeenth century French philosopher mathematician proclaimed that the
so called empty space above the mercury column in a Torricelli tube, that is,
what is called the Torricelli vacuum, is not a vacuum at all. Rather, he said,
it was something which was neither mercury nor air, something he called
aether.
The seventeenth century Dutch Physicist, Christian Huygens required such a
non intrusive medium like aether, so that light waves could propagate through
it, rather like the ripple waves on the surface of a pond. Hence the word lu-
miniferous aether. In the nineteenth century the aether was reinvoked. Firstly
in a very intuitive way Faraday could conceive of magnetic effects in vacuum
in connection with his experiments on induction. Based on this, the aether
was used for the propagation of electromagnetic waves in Maxwell’s Theory
of electromagnetism, which infact laid the stage for Special Relativity. This
aether was a homogenous, invariable, non-intrusive, material medium which
could be used as an absolute frame of reference atleast for certain chosen ob-
servers. However the experiments of Michelson and Morley towards the end
of the nineteenth century, lead to its downfall, and thus was born Einstein’s
Special Theory of Relativity in which there is no such absolute frame of ref-
erence. The aether lay shattered once again.
Very shortly thereafter the advent of Quantum Mechanics lead to its rebirth
in a new and unexpected avatar. Essentially there were two new ingredients
in what is today called the Quantum vacuum. The first was a realization that
Classical Physics had allowed an assumption to slip in unnoticed: In a source
or charge free ”vacuum”, one solution of Maxwell’s Equations of electromag-
netic radiation is no doubt the zero solution. But there is also a more realistic
non zero solution. That is, the electromagnetic radiation does not necessarily
vanish in empty space.
The second ingredient was the mysterious prescription of Quantum Mechan-
ics, the Heisenberg Uncertainty Principle, according to which it would be
impossible to precisely assign momentum and energy on the one hand and
spacetime location on the other. Clearly the location of a vacuum with no
energy or momentum cannot be specified in spacetime.
This leads to what is called a Zero Point Field. For instance a Harmonic
oscillator, a swinging pendulum for example, according to classical ideas has
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zero energy and momentum in its lowest position. But the Heisenberg Un-
certainty endows it with a fluctuating energy. This fact was recognized by
Einstein himself way back in 1913 who contrary to popular belief, retained
the concept of aether though from a different perspective [212]. It also pro-
vides an understanding of the fluctuating electromagnetic field in vacuum.
From another point of view, according to classical ideas, at the absolute zero
of temperature, there should not be any motion. After all the zero is when
all thermodynamic motion ceases. But as Nernst, father of the third law of
Thermodynamics himself noted, experimentally this is not so. There is the
well known superfluidity due to Quantum Mechanical – and not thermody-
namic – effects. This is the situation where supercooled Helium moves in a
spooky fashion.
This mysterious Zero Point Field or Quantum vacuum energy has since been
experimentally confirmed in effects like the Casimir effect which demonstrates
a force between uncharged parallel plates separated by a charge free medium,
the Lamb shift which demonstrates a minute oscillation of an electron orbit-
ing the nucleus in an atom-as if it was being buffetted by the Zero Point
Field-, the anomalous Quantum Mechanical gyromagnetic ratio g = 2 and so
on [68][213]-[217],[46].
The Quantum Vacuum is a far cry however, from the passive aether of olden
days. It is a violent medium in which charged particles like electrons and
positrons are constantly being created and destroyed, almost instantly, in-
fact within the limits permitted by the Heisenberg Uncertainty Principle for
the violation of energy conservation. One might call the Quantum Vacuum
as a new state of matter, a compromise between something and nothingness.
Something which corresponds to what the Rig Veda described thousands of
years ago: ”Neither existence, nor non existence.”
Quantum Vacuum can be considered to be the lowest state of any Quantum
field, having zero momentum and zero energy. The properties of the Quan-
tum Vacuum can under certain conditions be altered, which was not the case
with the erstwhile aether. In modern Particle Physics, the Quantum Vacuum
is responsible for phenomena like quark confinement, a property whereby it
would be impossible to observe an independent or free quark, the sponta-
neous breaking of symmetry of the electroweak theory, vacuum polarization
wherein charges like electrons are surrounded by a cloud of other opposite
charges tending to mask the main charge and so on. There could be regions of
vacuum fluctuations comparable to the domain structures of ferromagnets. In
a ferromagnet, all elementary electron-magnets are aligned with their spins
in a certain direction. However there could be special regions wherein the
spins are aligned differently.
Such a Quantum Vacuum can be a source of cosmic repulsion, as pointed by
Zeldovich and others [218, 24]. However a difficulty in this approach has been
that the value of the cosmological constant turns out to be huge, far beyond
what is observed. This has been called the cosmological constant problem
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[219].
There is another approach, sometimes called Stochastic Electrodynamics
which treats the ZPF as primary and attributes to it Quantum Mechani-
cal effects [220, 221]. It may be re-emphasized that the ZPF results in the
well known experimentally verified Casimir effect [222, 223]. We would also
like to point out that contrary to popular belief, the concept of aether has sur-
vived over the decades through the works of Dirac, Vigier, Prigogine, String
Theorists like Wilczek and others [224]-[229]. As pointed out it appears that
even Einstein himself continued to believe in this concept [230].
We would first like to observe that the energy of the fluctuations in the
background electromagnetic field could lead to the formation of elementary
particles.
Indeed this was Einstein’s belief. As Wilczek put it, “Einstein was not satis-
fied with the dualism. He wanted to regard the fields, or ethers, as primary.
In his later work, he tried to find a unified field theory, in which electrons(and
of course protons, and all other particles) would emerge as solutions in which
energy was especially concentrated, perhaps as singularities. But his efforts
in this direction did not lead to any tangible success.”
Let us see how this can happen. In the words of Wheeler [46], “From the
zero-point fluctuations of a single oscillator to the fluctuations of the elec-
tromagnetic field to geometrodynamic fluctuations is a natural order of pro-
gression...”
Let us consider, following Wheeler a Harmonic oscillator in its ground state.
The probability amplitude is

ψ(x) =
(mω

πh̄̄

)1/4

e−(mω/2h̄̄)x2

for displacement by the distance x from its position of classical equilibrium.
So the oscillator fluctuates over an interval

∆x ∼ (h̄/mω¯̄ )1/2

The electromagnetic field is an infinite collection of independent oscillators,
with amplitudes X1, X2 etc. The probability for the various oscillators to
have amplitudes X1, X2 and so on is the product of individual oscillator
amplitudes:

ψ(X1, X2, · · ·) = exp[−(X2
1 + X2

2 + · · ·)]
wherein there would be a suitable normalization factor. This expression gives
the probability amplitude ψ for a configuration B(x, y, z) of the magnetic
field that is described by the Fourier coefficients X1, X2, · · · or directly in
terms of the magnetic field configuration itself by

ψ(B(x, y, z)) = Pexp

(
−

∫ ∫
B(x1) · B(x2)

16π3hcr¯̄ 2
12

d3x1d
3x2

)
.
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P being a normalization factor. Let us consider a configuration where the
magnetic field is everywhere zero except in a region of dimension l, where
it is of the order of ∼ ∆B. The probability amplitude for this configuration
would be proportional to

exp[−(∆B)2l4/hc¯̄ )

So the energy of fluctuation in a region of length l is given by finally [46, 231,
145]

B2 ∼ hc¯̄
l4

In the above if l is taken to be the Compton wavelength of a typical elemen-
tary particle, then we recover its energy mc2, as can be easily verified. In
Chapter 1, we had seen how inertial mass and energy can be deduced on the
basis of Quantum Mechanical effects within the Compton scales. The above
gives us back this result in the context of the ZPF.
It may be mentioned that Einstein himself had believed that the electron
was a result of such a condensation from the background electromagnetic
field (Cf.[232, 24] for details). We will return to this point again. We also
take the pion to represent a typical elementary particle, as in the literature.
To proceed, as there are N ∼ 1080 such particles in the Universe, we get

Nm = M (6.1)

where M is the mass of the Universe. A justification for (6.1), which is con-
sistent, is that as the Universe at large is electrically neutral, the particles
interact via the gravitational force, which is very weak in any case.
In the following we will use N as the sole cosmological parameter.
Equating the gravitational potential energy of the pion in a three dimensional
isotropic sphere of pions of radius R, the radius of the Universe, with the rest
energy of the pion, we can deduce the well known relation [233, 176, 234]

R ≈ GM

c2
(6.2)

where M can be obtained from (6.1).
We now use the fact that given N particles, the fluctuation in the particle
number is of the order

√
N [234, 235, 168, 169, 210, 211], while a typical time

interval for the fluctuations is ∼ h/mc¯̄ 2, the Compton time, the fuzzy interval
we encountered in the previous Chapter. We will come back to this point later
in this Chapter, in the context of the minimum Planck scale: Particles are
created and destroyed - but the ultimate result is that

√
N particles are

created. So we have, as we saw briefly earlier,

dN

dt
=

√
N

τ
(6.3)
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whence on integration we get, (remembering that we are almost in the con-
tinuum region),

T =
h̄̄

mc2

√
N (6.4)

Later in this Chapter, and also in Chapter 8, we will analyze in greater
detail, the above and subsequent relations and continue with this preliminary
treatment. We can easily verify that the equation is indeed satisfied where T
is the age of the Universe. Next by differentiating (6.2) with respect to t we
get

dR

dt
≈ HR (6.5)

where H in (6.5) can be identified with the Hubble constant, and using (6.2)
is given by,

H =
Gm3c

h̄̄2 (6.6)

Equation (6.1), (6.2) and (6.4) show that in this formulation, the correct
mass, radius, Hubble constant and age of the Universe can be deduced given
N as the sole cosmological or large scale parameter. Equation (6.6) can be
written as

m ≈
(

Hh̄̄2

Gc

) 1
3

(6.7)

Equation (6.7) has been empirically known as an ”accidental” or ”mysterious”
relation. As observed by Weinberg[28], this is unexplained: it relates a single
cosmological parameter H to constants from microphysics. We will touch
upon this micro-macro nexus again. In our formulation, equation (6.7) is no
longer a mysterious coincidence but rather a consequence.
As (6.6) and (6.5) are not exact equations but rather, order of magnitude
relations, it follows, on differentiating (6.5) that a small cosmological constant
∧ is allowed such that

∧ < 0(H2)

This is consistent with observation and shows that ∧ is very small – this
has been a puzzle, the so called cosmological constant problem alluded to,
because in conventional theory, it turns out to be huge [219]. But it poses
no problem in this formulation. We shall further characterize ∧ later in this
Chapter.
To proceed we observe that because of the fluctuation of ∼ √

N (due to the
ZPF), there is an excess electrical potential energy of the electron, which
infact we have identified as its inertial energy. That is [168, 234],

√
Ne2/R ≈ mc2.

On using (6.2) in the above, we recover the well known Gravitation-electro-
magnetism ratio viz.,
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e2/Gm2 ∼
√

N ≈ 1040 (6.8)

or without using (6.2), we get, instead, the well known so called Weyl-
Eddington formula,

R =
√

Nl (6.9)

(It appears that this was first noticed by H. Weyl [236]). Infact (6.9) is the
spatial counterpart of (6.4). If we combine (6.9) and (6.2), we get,

Gm

lc2
=

1√
N

∝ T−1 (6.10)

where in (6.10), we have used (6.4). This was the relation we encountered
in the previous chapter. Following Dirac (cf.also [172]) we treat G as the
variable, rather than the quantities m, l, c and h̄̄̄ (which we will call micro
physical constants) because of their central role in atomic (and sub atomic)
physics.
Next if we use G from (6.10) in (6.6), we can see that

H =
c

l

1√
N

(6.11)

Thus apart from the fact that H has the same inverse time dependance on
T as G, (6.11) shows that given the microphysical constants, and N , we can
deduce the Hubble constant also, as from (6.11) or (6.6).
Using (6.1) and (6.2), we can now deduce that

ρ ≈ m

l3
1√
N

(6.12)

Next (6.9) and (6.4) give,
R = cT (6.13)

(6.12) and (6.13) are consistent with observation.
Finally, we observe that using M,GandH from the above, we get

M =
c3

GH

This relation is required in the Friedman model of the expanding Universe
(and the Steady State model too).
The above model predicts a dark energy driven ever expanding and acceler-
ating Universe with a small cosmological constant whose density keeps de-
creasing. This seemed to go against the accepted idea that the density of the
Universe equalled the critical density required for closure and that aided by
Dark Matter, the Universe was decelerating. However, as noted, from 1998
onwards, following the work of Perlmutter, Schmidt and co-workers, these
otherwise apparently heretic conclusions have been vindicated.
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It may be mentioned that the observational evidence for an accelerating Uni-
verse was the American Association for Advancement of Science’s (Science
Magazine) Breakthrough of the Year, 1998 while the evidence for nearly sev-
enty five percent of the Universe being dark energy, based on the Wilkinson
Microwave Anisotropy Probe (WMAP) and the Sloan Sky Digital Survey
was the Breakthrough of the Year, 2003 [Cf.ref.Science, December 1998 and
Science, December, 2003].

6.3 Issues and Ramifications

i) The above cosmology exhibits a time variation of the gravitational constant
of the form

G =
β

T
(6.14)

Indeed this is true in a few other schemes also, including the so called Brans-
Dicke and Dirac cosmologies (Cf. [237, 238, 24]). Interestingly it can be shown
that such a time variation can explain the precession of the perihelion of
Mercury (Cf.[170]). It can also provide an alternative explanation for Dark
Matter and the bending of light (while the Cosmic Microwave Background
Radiation is also explained (Cf.[24])).
It is also possible to deduce the existence of gravitational waves given (6.14).
To see this quickly let us consider the Poisson equation for the metric gµν

∇2gµν = Gρuµuν (6.15)

The solution of (6.15) is given by

gµν = G

∫
ρuµuν

|r − r′|d
3r (6.16)

Indeed equations similar to (6.15) and (6.16) hold for the Newtonian gravi-
tational potential also. If we use the second time derivative of G from (6.14)
in (6.16), along with (6.15), we can immediately obtain the D’alembertian
wave equation for gravitational waves, instead of the Poisson equation:

Dgµν ≈ 0

ii) Recently a small variation with time of the fine structure constant has been
detected and reconfirmed by Webb and coworkers [239, 240]. This observation
is consistent with the above cosmology. We can see this as follows. We use
an equation due to Kuhne [241]

α̇z

αz
= αz

ḢzH

HzH
, (6.17)

If we now use the fact that the cosmological constant Λ is given by
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Λ < 0(H2) (6.18)

as can be seen from (6.5), in (6.17), we get using (6.18),

α̇z

αz
≤ βHzH (6.19)

where β < −αz < −10−2.
Equation (6.19) can be shown to be the same as

α̇z

αz
≤ −1 × 10−5HzH . (6.20)

which is the same as Webb’s result.
We give another derivation of (6.20) in the above context wherein, as the num-
ber of particles in the Universe increases with time, we go from the Planck
scale to the Compton scale.
This can be seen as follows: In equation (6.8), if the number of particles in the
Universe, N = 1, then the mass m would be the Planck mass. In this case the
classical Schwarzchild radius of the Planck mass would equal its Quantum
Mechanical Compton wavelength. To put it another way, all the energy would
be gravitational (Cf.[24] for details). However as the number of particles N
increases with time, according to (6.4), gravitation and electromagnetism get
differentiated and we get (6.8) and the Compton scale.
It is known that the Compton length, due to zitterbewegung causes a cor-
rection to the electrostatic potential which an orbiting electron experiences,
rather like the Darwin term [29].
Infact we have

〈δV 〉 = 〈V (r + δr)〉 − V 〈(r)〉

= 〈δr ∂V

∂r
+

1
2

∑
ıj

δrıδrj
∂2V

∂rı∂rj
〉

≈ 0(1)δr2∇2V (6.21)

Remembering that V = e2/r where r ∼ 10−8cm, from (6.21) it follows that
if δr ∼ l, the Compton wavelength then

∆α

α
∼ 10−5 (6.22)

where ∆α is the change in the fine structure constant from the early Universe.
(6.22) is an equivalent form of (6.20) (Cf.ref.[241]), and is the result originally
obtained by Webb et al (Cf.refs.[239, 240]).
iii) The latest observations of distant supernovae referred to above indicate
that the closure parameter Ω ≤ 1.
Remembering that Ω is given by [5]
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Ω =
8πG

3H2
ρ

we get therefrom on using (6.1)

H2

2G
R3 = mN

which immediately leads to the mysterious Weinberg formula (6.7). Thus this
is the balance between the cosmos at large and the micro cosmos. We will
return to this point in Chapter 8.
iv) In General Relativity as well as in the Newtonian Theory, we have, without
a cosmological constant

R̈ = −4
3
πGρR (6.23)

We remember that there is an uncertainty in time to the extent of the Comp-
ton time τ , and also if we now use the fact that G varies with time, (6.23)
becomes on using (6.14),

R̈ = −4
3
πG(T − τ)ρR

= −4
3
πGρR +

4
3
πρR

( τ

T

)
G (6.24)

Remembering that at any point of time, the age of the Universe, that is T
itself is given by (6.4), we can see from (6.24) that this effect of time variation
of G, which again is due to the background Zero Point Field is the same as
an additional density, the vacuum density given by

ρvac =
ρ√
N

(6.25)

This term in (6.24) is also equivalent to the presence of a cosmological con-
stant Λ as discussed above. On the other hand, we know independently that
the presence of a vacuum field leads to a cosmological constant given by
(Cf.ref.[24] and references therein)

Λ = Gρvac (6.26)

Equation (6.26) is pleasingly in agreement with (6.24) and (6.25) that is, the
preceding considerations of fluctuational creation: Infact, due to fluctuational
creation ρvac should be given by

ρvac =
√

Nm/R3,

as
√

N particles are created. This gives, on using (6.9),

ρvac =
m

l3N
= ρ/

√
N,
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which is (6.25).
In other words quantitatively we have reconfirmed that it is the background
Zero Point Field that manifests itself as the cosmological constant described
in Section 2. This also gives as pointed out an explanation for the so called
cosmological constant problem [219] viz., why is the cosmological constant so
small?
v) In the above cosmology of fluctuations, our starting point was the creation
of

√
N particles within the minimum time interval, a typical elementary par-

ticle Compton time τ . A rationale for this, very much in the spirit of the
condensation of particles from a background Zero Point Field as discussed at
the beginning of Section 2, can also be obtained in terms of a phase transition
from the Zero Point Field or Quantum Vacuum as we will see in the sequel.
In this case, particles are like the Benard cells which form in fluids, as a result
of a phase transition. While some of the particles or cells may revert to the
Zero Point Field, on the whole there is a creation of

√
N of these particles. If

the average time for the creation of the
√

N particles or cells is τ , then at any
point of time where there are N such particles, the time elapsed, in our case
the age of the Universe, would be given by (6.4) (Cf. [242, 243]). While this
is not exactly the Big Bang scenario, there is nevertheless a rapid creation
of matter from the background Quantum Vacuum or Zero Point Field. Thus
over 1040 particles would have been created within a fraction of a second.
In any case when τ → 0, we recover the Big Bang scenario with a singular
creation of matter, while when τ → Planck time we recover the Prigogine
Cosmology (Cf.[24] for details). However in neither of these two limits we
can deduce all the above consistent with observation Large Number relations
which therefore have to be branded as accidents.
One of the puzzles has been, why is there an excess of matter over anti matter?
After all, if particles are created from the Quantum Vacuum, the probabil-
ity for the creation of a particle equals the probability for the creation of
an anti particle. At this stage what may be called a probability symmetry
breaking appears. Let us see a simple example. If a couple has n children,
then the probability that there would be n/2 boys is actually less than half,
even though the probability for the birth of a boy equals the probability for
the birth of a girl. For instance if n is six, the probability for three boys is
5/16, which is less than one third! Ofcourse for large n this figure would be
much closer to half, but even a minute fractional difference would lead to
large scale particle - anti particle asymmetry.
vi) The above cosmological model is related to the fact that there are min-
imum spacetime intervals l, τ . Indeed in this case as we saw in the previous
Chapter, there is an underlying non commutative geometry of spacetime
[244, 162, 101] given by

[x, y] ≈ 0(l2), [x, px] = ıh̄̄[1 + βl2], [t, E] = ıh̄̄[1 + γτ2] (6.27)

Interestingly (6.27) implies as we saw, modification to the usual Uncertainty
Principle. (This in turn has also been interpreted in terms of a variable speed
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of light cosmology [245, 246, 247]).
The relations (6.27), lead to the modified Uncertainty relation

∆x ∼ h̄̄

∆p
+ α′∆p

h̄̄
(6.28)

(6.28) appears also in Quantum Super String Theory and is related to the
well known duality relation

R → α′/R

(Cf.[17, 23]). In any case (6.28) is symptomatic of the fact that we cannot go
down to arbitrarily small spacetime intervals. We now observe that the first
term of (6.28) gives the usual Uncertainty relation. In the second term, we
write ∆p = ∆Nmc, where ∆N is the Uncertainty in the number of particles,
in the Universe. Also ∆x = R, the radius of the Universe where

R ∼
√

Nl,

the famous Eddington relationship (6.9). It should be stressed that the other-
wise empirical Eddington formula, arises quite naturally in a Brownian char-
acterisation of the Universe as has been pointed out in the previous Chapter
(Cf. for example ref.[187]). Put simply (6.9) is the Random Walk equation.
We now get back,

∆N =
√

N

This is the uncertainty in the particle number, we used earlier. Substituting
this in the time analogue of the second term of (6.28), we immediately get,
T being the age of the Universe,

T =
√

Nτ

which is equation (6.4). So, our cosmology is self consistent with the modified
relation (6.28). The fluctuational effects are really couched in the modification
of the Heisenberg Principle, as given in (6.28).
Interestingly these minimum spacetime considerations can be related to the
Feynman-Wheeler Instantaneous Action At a Distance formulation (Cf.[248,
202, 161]), a point which we shall elaborate further in the sequel.
We finally remark that relations like (6.27) and (6.28), which can also be
expressed in the form, a being the minimum length,

[x, px] = ıh̄̄[1 +
(a

h̄̄

)2

p2]

(and can be considered to be truncated from a full series on the right hand
side (Cf.[179])), could be deduced from the rather simple model of a lattice -
a one dimensional lattice for simplicity. In this case we will have (Cf.[24])

[x, px] = ıhcos¯̄
( p

h̄̄
a
)

,
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where a is the lattice length, l the Compton length in our case. The energy
time relation now leads to a correction to the mass energy formula, viz

E = mc2cos(kl), k ≡ p/h̄̄

This is the contribution of the extra term in the Uncertainty Principle and
we will return to it in Chapter 10, in the context of observational tests.
vii) As noted the Planck scale is an absolute minimum scale in the Uni-
verse. In this section, ii) we argued that with the passage of time the Planck
scale would evolve to the present day elementary particle Compton scale. To
recapitulate: We have by definition

hG/c¯̄ 3 = l2P

where lP is the Planck length ∼ 10−33cms. If we use G from (6.10) in the
above we will get

l = N1/4lP (6.29)

Similarly we have
τ = N1/4τPτ (6.30)

In (6.29) and (6.30) l and τ denote the typical elementary particle Compton
length and time scale, and N is the number of such elementary particles in
the Universe.
We could explain these equations in terms of the Benard cell like elementary
particles referred to above. This time there are a total of n =

√
N Planck

particles and (6.29) and (6.30) are the analogues of equations (6.4) and (6.9)
in the context of the formation of such particles. Indeed as we saw a Planck
mass, mP ∼ 10−5gms, has a Compton life time and also a Beckenstein Ra-
diation life time of the order of the Planck time. These spacetime scales are
much too small and we encounter much too large energies from the point of
view of our experimental constraints. As noted in the previous chapter our
observed scale is the Compton scale, in which Planck scale phenomena are
moderated. In any case it can be seen from the above that as the number
of particles N increases, the scale evolves from the Planck to the Compton
scale.
So, the scenario which emerges is, that as the Universe evolves, Planck par-
ticles form the underpinning for elementary particles, which in turn form the
underpinning for the Universe by being formed continuously.
This can be confirmed by the following argument: We can rewrite (6.29) as

l = ν′√T (6.31)

ν′ = lP /
√

τ ≈ h/m¯̄ P

wherein we have used (6.4). Equation (6.31) as we saw earlier, is identical to
the Brownian diffusion process which is infact the underpinning for equations
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like (6.4) or (6.9), except that this time we have the same Brownian Theory
operating from the Planck scale to the Compton scale, instead of from the
Compton scale to the edge of the Universe as seen above (Cf. also [187, 24]).
Interestingly, let us apply the above scenario of

√
n Planck particles forming

an elementary particle, to the extra term of the modified Uncertainty Princi-
ple (6.28), as we did earlier in this section in (iv). Remembering that α′ = l2P
in the theory, and ∆p = N1/4mP c, in this case, we get, as ∆x = l,

l = N1/4lP ,

which will be recognized as (6.29) itself! Thus once again we see how the
above cosmology is consistently tied up with the non commutative spacetime
expressed by equations (6.27) or (6.28).
It may be mentioned that, as indeed can be seen from (6.29) and (6.30), in
this model, the velocity of light remains constant.
viii) We would now like to comment further upon the Compton scale and the
fluctuational creation of particles alluded to above. In this case particles are
being produced out of a background Quantum Vacuum or Zero Point Field
which is pre spacetime. First a Brownian process alluded to above defines the
Planck length while a Brownian random process with the Planck scale as the
fundamental interval leads to the Compton scale (Cf. also ref.[249]).
This process is a phase transition, a critical phenomenon. To see this briefly,
let us start with the Landau-Ginzburg equation [188]

− h̄̄2

2m
∇2ψ + β|ψ|2ψ = −αψ (6.32)

Here h̄̄̄ and m have the same meaning as in usual Quantum Theory. It
is remarkable that the above equation (6.32) is identical with a similar
Schrödinger like equation based on amplitudes which we encountered in¨
Chapter 1, where moreover |ψ|2 is proportional to the mass (or density) of
the particle (Cf. ref.[24] for details). The equation in question is,

ıh̄̄
∂ψ

∂t
=

−h̄̄2

2m′
∂2ψ

∂x2
+

∫
ψ∗(x′)ψ(x)ψ(x′)U(x′)dx′, (6.33)

In (6.33), ψ(x) is the probability of a particle being at the point x and the inte-
gral is over a region of the order of the Compton wavelength. From this point
of view, the similarity of (6.33) with (6.32) need not be surprising consider-
ing also that near Critical Points, due to universality diverse phenomena like
magnetism or fluids share similar mathematical equations. Equation (6.33)
was shown to lead to the Schrödinger equation with the particle acquiring a¨
mass (Cf.also ref.[250]).
Infact in the Landau-Ginzburg case the coherence length is given by

ξ =
(γ

α

) 1
2

=
hνF

∆
(6.34)
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which can be easily shown to reduce to the Compton wavelength (Cf. also
ref.[74]).
Thus the emergence of Benard cell like elementary particles from the Quan-
tum Vacuum mimics the Landau-Ginzburg phase transition. In this case we
have a non local growth of correlations reminiscent of the standard inflation
theory.
As is known, the interesting aspects of the Critical Point theory (Cf.ref.[251])
are universality and scale. Broadly, this means that diverse physical phenom-
ena follow the same route at the Critical Point, on the one hand, and on the
other this can happen at different scales, as exemplified for example, by the
course graining techniques of the Renormalization Group [252]. To highlight
this point we note that in Critical Point phenomena we have the reduced
order parameter Q̄ (which gives the fraction of the excess of new states) and
the reduced correlation length ξ̄ (which follows from (6.34)). Near the Critical
Point we have relations [253] like

(Q̄) = |t|β , (ξ̄) = |t|−ν

Whence
Q̄ν = ξ̄β̄ (6.35)

In (6.35) typically ν ≈ 2β. As Q̄ ∼ 1√
N

because
√

N particles are created fluc-
tuationally, given N particles, and in view of the fractal two dimensionality
of the path

Q̄ ∼ 1√
N

, ξ̄ = (l/R)2 (6.36)

This gives the Eddington formula,

R =
√

Nl

which is nothing but (6.9).
There is another way of looking at this. The noncommutative geometry (6.27)
brings out the primacy of the Quantum of Area. Indeed this has been noted
from the different perspective of Black Hole Thermodynamics too [111]. We
would also like to point out that a similar treatment leads from the Planck
scale to the Compton scale.
In other words the creation of particles is the result of a Critical Point phase
transition and subsequent coarse graining (Cf. also ref.[111]).
The above model apart from mimicking inflation also explains as we saw, the
so called miraculous Large Number coincidences.
The peculiarity of these relations as we saw is that they tie up large scale
parameters like the radius or age of the Universe or the Hubble constant with
microphysical parameters like the mass, charge and the Compton scales of
an elementary particle and the gravitational constant. That is, the Universe
appears to have a Machian or holistic feature. One way to understand why
the large and the small are tied up is to remember, as we saw in the earlier
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chapter, that there is an underpinning of normal mode Planck oscillators,
that is, collective phenomena all across the Universe.
We will return to this point in Chapter 8, but to re-emphasize: It has been
known that there is a deep connection between a stochastic and Brownian
behaviour on the one hand and Critical Point phenomena and the Renor-
malization Group on the other hand. Fractality itself is a manifestation of
resolution dependent measurements, while Renormalization Group consider-
ations arise due to coarse graining at different resolutions. A good example
of the fractal behaviour is Quantum Mechanics itself which as noted earlier
has been shown to have the fractal dimension 2.
In the above context, we will now argue that there is a manifestation of what
may be called “scaled” Quantum Mechanics, at different scales in the Uni-
verse, and not just at the usual Quantum scale.
It has already been argued that in the Universe at large, there appear to be
the analogues of the Planck constant at different scales [254, 255]. Infact we
have

h1 ∼ 1093 (6.37)

for super clusters;
h2 ∼ 1074 (6.38)

for galaxies and
h3 ∼ 1054 (6.39)

for stars. And
h4 ∼ 1034 (6.40)

for Kuiper Belt objects. In equations (6.37) - (6.40), the hı play the role of
the Planck constant, in a sense to be described below. The origin of these
equations is related to the following empirical relations

R ≈ l1
√

N1NN (6.41)

R ≈ l2
√

N2NN (6.42)

l2 ≈ l3
√

N3NN (6.43)

R ∼ l
√

N (6.44)

and a similar relation for the KBO (Kuiper Belt objects)

L ∼ l4
√

N4NN (6.45)

where N1NN ∼ 106 is the number of superclusters in the Universe, l1 ∼ 1025cms
is a typical supercluster size N2NN ∼ 1011 is the number of galaxies in the
Universe and l2 ∼ 1023cms is the typical size of a galaxy, l3 ∼ 1 light years
is a typical distance between stars and N3NN ∼ 1011 is the number of stars
in a galaxy, R being the radius of the Universe ∼ 1028cms, N ∼ 1080 is
the number of elementary particles, typically pions in the Universe and l is
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the pion Compton wavelength and N4NN ∼ 1010, l4 ∼ 105cm, is the dimension
of a typical KBO (with mass 1019gm and L the width of the Kuiper Belt
∼ 1010cm cf.ref.[24]).
The size of the Universe, the size of a supercluster etc. from equations like
(6.41)-(6.45), as described in the references turn up as the analogues of the
Compton wavelength. For example we have

R =
h1

Mc
(6.46)

One can see that equations (6.37) to (6.46) are a consequence of gravitational
orbits (or the Virial Theorem) and the conservation of angular momentum
viz.,

GM

L
∼ v2,MvL = H (6.47)

(Cf.refs.[254, 255]), where L,M, v represent typical length (or dispersion in
length), mass and velocities at that scale and H denotes the scaled Planck
constant.
It also appears that equations (6.41) to (6.45) resemble a typical Random
Walk relation (Cf.[256]) of Brownian motion.
All this is suggestive but empirical. The question arises whether there is any
theoretical justification. To investigate this further we observe that if we use
(6.47) along with the relation,

L = vT

where T is a typical time scale, for example the time period for an orbit, we
get the relations

L2 =
H

M
T

(
H =

GM2

v

)
(6.48)

(48) is nothing but the well known diffusion equation of Nelson viz.,

∆x2 = ν∆t, ν =
h

m
(6.49)

where ν is the diffusion constant, h the Planck constant and m the mass of
a typical particle.
We now observe that as is well known, the relations (6.48) or (6.49) lead
to an equation identical to the Quantum Mechanical Schrödinger equation¨
(Cf.ref.[176] for a detailed derivation)

hı
∂ψ

∂t
+

h2
ı

2m
∇2ψ = 0 (6.50)

(for different hı). Indeed this is not surprising because one can rewrite equa-
tion (6.49) as
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m∆x
∆x

∆t
= h = ∆x · ∆p (6.51)

which gives the well known Uncertainty relation. Conversely, from the Un-
certainty Principle we could get back (6.48) or (6.49).
Interestingly it has been shown that this is true, not just for the special form
of the diffusion constant, but also for any other form of the diffusion constant
[257]. Another interesting point is that starting from (6.48) or (6.49), we can
deduce equations like (6.41), which describe a Brownian path [187].
In any case the steps leading to equation (6.50) and (6.50) itself provide the
rationale for the scaled De Broglie or Compton lengths, for example equation
(6.46), which follow from (6.51).
All this can be linked to Critical Point Theory and the Renormalization
Group exactly as above. Relations like (6.41) to (6.45) would then be the
result of equations (6.35) and (6.36) at different scales, just as (6.9) resulted
from them.
We also observe that a Schrödinger equation like procedure has been used¨
though in an empirical way by Agnese and Festa [258] to derive a Titius-Bode
type relation for planetary distances which now appear as quantized levels.
This consideration has been extended in an empirical way to also account for
quantized cosmic distances [259].
Interestingly if we consider a wave packet of the generalized Schrödinger¨
equation (6.50) with h1 given by (6.1) for the Universe itself, we have for a
Gaussian wave packet

R ≈ σ√
2

(
1 +

h2
1T

2

σ4M2

)1/2 (
≈ 1√

2
h1T

σM

)
(6.52)

where R and T denote the radius and age of the Universe, M its mass and
σ ∼ R is the spread of the wave packet. As R ≈ cT (6.52) gives us back
(6.46), that is the “Compton wavelength” of the Universe treated as a wave
packet.
Interestingly also we can pursue the reasoning of equations like (6.37) to the
case of terrestrial phenomena. Let us consider a gas at standard temperature
and pressure. In this case, the number of molecules n ∼ 1023 per cubic cen-
timeter, so that r ∼ 1cm and with the same l, we can get a ”scaled” Planck
constant h̃ ∼ 10−44 << h, the Planck constant.
In this case, a simple application of the WKB approximation, leads im-
mediately from the Schrödinger equation at the new scale to the classical¨
Hamilton-Jacobi theory, that is to classical mechanics.
Equations like (6.41) are the analogue of the well known Eddington formula.
Similarly we can have the analogue of the mysterious Weinberg relation link-
ing the pion mass to the Hubble constant, from H2 = M3LG. For this we
need to define the analogue of the Hubble constant H

Ĥ =
v

L
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to get

M =

(
ĤH2

Gv

) 1
3

which is the required relation.
We can now argue that just as matter in the form of elementary particles,
forms or condenses within the Compton wavelength from a background Quan-
tum Vacuum in a phase transition, matter at other scales, for example stars
and galaxies also could be considered to condense or cluster by a similar
mechanism. This would give a rationale for the observed lumpiness of the
Universe. Similar considerations apply for the other scales referred to.
ix) We will now argue, following the above reasoning, that the difference be-
tween electromagnetism at the micro scale and gravitation at the macro scale
is merely a matter of the difference in the time and length scales.
Infact the operative equations are (6.35) and (6.36):

Q̄ν = ξ̄β̄

where Q̄ and ξ̄ are the reduced order parameter and correlation length.
We now have

Q̄ ∼ 1√
N

, ξ̄ = (l/R)2

which gives, Eddington like relations.
Now if we consider the representation of the Hamiltonian as the differential
time operator we will get

H(T ) =
d

dT
=

d√
Ndτ

=
H(τ)√

N
(6.53)

H(T ) in (6.53) denotes gravitation represented by the coupling constant Gm2

and H(τ) in (6.53) denotes electromagnetism represented by the coupling
constant e2 and m referring to the same elementary particle. Whence if (6.53)
is consistent, we should have,

e2

Gm2
∼

√
N (6.54)

Infact this is (6.8) - the well known empirical and supposedly accidental
relation - the ratio of the coupling constants encountered earlier.
Let us now consider the analogue of the microscopic relation,

m
l2

τ
= h

for the macro or cosmic scale. We then get

h → ML2/T = h1 ∼ 1093 (6.55)
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This equation which is the same as (6.37), is infact perfectly meaningful
because h1 in (6.55) is the Godel spin of the Universe [254, 259]. Infact (6.55)
immediately leads to

R =
h1

Mc
(6.56)

which is (6.46). Equations (6.55) and (6.56) show that the Universe itself
seems to follow a Quantum Mechanical behaviour with a scaled up Planck
constant h1 as argued previously.
The above considerations in the context of universality and scaling effects
of Critical Point Phenomena and the Renormalization Group mean: The
Universe is a coarse grained scaled up version of the micro world, gravitation
being the counterpart of electromagnetism should be given by their mutual
scaled ratio. Let us see if this model is correct.
In such a coarse graining, we know that at a Critical Point we have for the
coupling constants,

J (1)/kT (1)
cTT = 1J (2)/kT (2)

cTT = 1

where from the theory, in our case,

T (1)
cTT /T (2)

cTT = l/R

Whence we get
J (1)/J (2) = l/R (6.57)

As J (1) = Gm2 and J (2) = e2 are the coupling constants at the two scales,
does (6.57) give the correct ratio? Infact it gives us back (6.8). In other words,
as can be seen from (6.53) or (6.57), the “weak” gravitational interaction
is a manifestation of the much longer time periods involved on the macro
or cosmic scale, while the much stronger electromagnetic interaction is a
manifestation of the much smaller scale of time at the micro level. This can
be elaborated upon in the following way.
The electromagnetic energy of a typical elementary particle, for example the
pion is given by

Energy =
e2

l
=

h̄̄

τ

On the other hand its gravitational energy is given by

Gravitational Energy =
Gm2

l
=

h̄̄

T
(6.58)

Whence,
Gm2

e2
=

l

R
=

1√
N

(6.59)

In both these cases, as we have been dealing with a microscopic particle,
the Heisenberg Uncertainty Principle holds. So while the electromagnetic
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energy plays out in the Compton time τ , the gravitational energy plays out
during the life time of the Universe. Sivaram [260] uses in (6.58) the relation
T = 1

H , where H is the Hubble constant, to get, as a curiosity, the mysterious
Weinberg formula again.
Let us now consider the gravitational energy of all the N particles in the
Universe. This is given by

E =
NGm2

l

The energy E has a low Beckenstein temperature and as can be easily calcu-
lated from the Beckenstein Radiation decay formula viz.,

T = 8.4 × 10−24(E/c2)3

the life time is T , the age of the Universe itself.
Interestingly if the above considerations are carried over to the Planck scale
versus the Compton scale, we can easily verify that there is no new scaled
down Planck constant, as for example in (6.55)– that is the considerations
remain the same as those at the Compton scale. However let us see what we
get if in analogy to (6.35) and (6.36)we compare the Planck and Compton
scales. This time, the Critical Point relations lead to the known relation,

l =
√

nlP , τ =
√

nτPτ .

Furthermore, (6.53), with a similar notation leads to,

H(τ) =
H(τPτ )√

n

which also we have encountered earlier in this Chapter. It is just,

m = mP /
√

n

Further, the Beckenstein Radiation life time of a Planck mass, gives this time
- the Planck Compton time.
This can be illustrated by the following amusing description in Indian Mythol-
ogy. Brahma, the creator of the Universe has a very very long day– while he
takes a bath, many time consuming and momentous events take place on the
earth. By Brahma’s reckoning, however, the time elapsed is still miniscule.
Interestingly the ratio of the time scales would be the same as above, because
of the fact that the estimate for the age of the Universe or Brahma’s day is
exactly of the same order of magnitude as modern estimates.

6.4 The Nature of Space Time

As we noted earlier all of Classical Physics and Quantum Theory, is based
on the Minkowski spacetime, as for example in the case of Quantum Field
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Theory, or Reimannian spacetime as in the case of General Relativity. In the
non relativistic theories, Newtonian spacetime, is used, which is a special case
of Minkowskian spacetime. But in all these cases the common denominator
is that we are dealing with a differentiable manifold.
As we saw in the previous Chapter, this breaks down however in Quan-
tum Gravity including the author’s approach, String Theory and other ap-
proaches, be it at the Planck scale, or at the Compton scale [180, 164, 261,
262]. The underlying reason for this breakdown of a differentiable space-
time manifold is the Uncertainty Principle–as we go down to arbitrarily
small spacetime intervals, we encounter arbitrarily large energy momenta.
As Wheeler put it [46], “no prediction of spacetime, therefore no meaning
for spacetime is the verdict of the Quantum Principle. That object which is
central to all of Classical General Relativity, the four dimensional spacetime
geometry, simply does not exist, except in a classical approximation.” Before
proceeding to analyze the nature of spacetime beyond the classical approxi-
mation, let us first analyze briefly the nature of classical spacetime itself.
We can get an insight into the nature of the usual spacetime by consider-
ing the well known formulation of Quantum Theory in terms of stochastic
processes more precisely, a double Wiener process which, as we saw, models
fuzzy spacetime [175, 178, 176, 24].
In the stochastic approach, we deal with a double Wiener process which leads
to a complex velocity V − ıU . It is this complex velocity that leads to Quan-
tum Theory from the usual diffusion theory as seen in the previous Chapter.
To see this in a simple way, let us write the usual diffusion equation as

∆x · ∆x =
h

m
∆t ≡ ν∆t (6.60)

We saw that equation (6.60) can be rewritten as the usual Quantum Mechan-
ical relation,

m
∆x

∆t
· ∆x = h = ∆p · ∆x (6.61)

We are dealing here, with phenomena within the Compton or De Broglie
wavelength.
We now treat the diffusion constant ν to be very small, but non vanishing.
That is, we consider the semi classical case. This is because, a purely classical
description, does not provide any insight.
It is well known that in this situation we can use the WKB approximation
[263]. Whence the right hand side of the wave function,

ψ =
√

ρeı/hS¯̄

goes over to, in the one dimensional case, for simplicity,

(px)−
1
2 e

1
h

∫
p(x)dx
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so that we have, on comparison,

ρ =
1
px

(6.62)

ρ being the probability density. In this case the condition U ≈ 0, that is, the
velocity potential becoming real, implies

ν · ∇ln(
√

ρ) ≈ 0 (6.63)

This semi classical analysis suggests that
√

ρ is a slowly varying function of
x, infact each of the factors on the left side of (6.63) would be ∼ 0(h), so
that the left side is ∼ 0(h2) (which is being neglected). Then from (6.62) we
conclude that px is independent of x, or is a slowly varying function of x.
The equation of continuity now gives

∂ρ

∂t
+ ∇(ρv) =

∂ρ

∂t
= 0

That is the probability density ρ is independent or nearly so, not only of x,
but also of t. We are thus in a stationary and homogenous scenario. This is
strictly speaking, possible only in a single particle Universe, or for a com-
pletely isolated particle, without any effect of the environment. Under these
circumstances we have the various conservation laws and the time reversible
theory, all this taken over into Quantum Mechanics as well. This is an ap-
proximation valid for small, incremental changes, as indeed is implicit in the
concept of a differentiable spacetime manifold.
Infact the well known displacement operators of Quantum Theory which de-
fine the energy momentum operators are legitimate and further the energy
and momenta are on the same footing only under this approximation[264].
We would now like to point out the well known close similarity between
the formulation mentioned above and the hydrodynamical formulation for
Quantum Mechanics, which also leads to identical equations on writing the
wave function as above. These two approaches were reconciled by considering
quantized vortices at the Compton scale (Cf.[24, 265]).
To proceed further, we start with the Schrödinger equation¨

ıh̄̄
∂ψ

∂t
= − h̄̄2

2m
∇2ψ + V ψ (6.64)

Remembering that for momentum eigen states we have, for simplicity, for
one dimension

h̄̄

ı

∂

∂x
ψ = pψ (6.65)

where p is the momentum or p/m is the velocity v, we take the derivative
with respect to x (or x) of both sides of (6.64) to obtain, on using (6.65),

ıh̄̄
∂(vψ)

∂t
= − h̄̄2

2m
∇2(vψ) +

∂V

∂x
ψ + V vψ (6.66)
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We would like to compare (6.66) with the well known equation for the velocity
in hydrodynamics[266, 267], following from the Navier-Stokes equation,

ρ
∂v

∂t
= −∇p − ραTg + µ∇2v (6.67)

In (6.67) v is a small perturbational velocity in otherwise stationary flow
between parallel plates separated by a distance d, p is a small pressure, ρ is
the density of the fluid, T is the temperature proportional to Q(z)v, µ is the
Navier-Stokes coefficient and α is the coefficient of volume expansion with
temperature. Also required would be

β ≡ ∆T

d
.

v itself is given by

vz = W (z)exp(σt + ıkxx + ıkyy), (6.68)

z being the coordinate perpendicular to the fluid flow.
We can now see the parallel between equations (6.66) and (6.67). To verify
the identification we would require that the dimensionless Rayleigh Number

R =
αβgd4

κν

should have an analogue in (6.66) which is dimensionless, κ, ν being the
thermometric conductivity and viscosity.
Remembering that

ν ∼ h

m

and
d ∼ λ

where λ is the Compton wavelength in the above theory (Cf.[24, 160] for
details) and further we have

ρ ∝ f(z)g = V (6.69)

for the identification between the hydrostatic energy and the energy V of
Quantum Mechanics, it is easy using (6.69) and earlier relations to show that
the analogue of R is

(c2/λ2) · λ4 · (m/h)2 (6.70)

The expression (6.70) indeed is dimensionless and of order 1. Thus the math-
ematical identification is complete.
Before proceeding, let us look at the physical significance of the above consid-
erations (Cf.[268] for a graphic description.) Under conditions of stationery
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flow, when the difference in the temperature between the two plates is negli-
gible there is total translational symmetry, as in the case of the displacement
operators of Quantum Theory. But when there is a small perturbation in the
velocity (or equivalently the temperature difference), then beyond a critical
value the stationarity and homogeneity of the fluid is disrupted, or the sym-
metry is broken and we have the phenomena of the formation of Benard cells,
which are convective vortices and can be counted. This infact is the ”birth”
of space It must be stressed that before the formation of the Benard cells,
there is no “space”, that is, no point to distinguish from or relate to another
point. Only with the formation of the cells are we able to label space points.
In the context of the above identification, the Benard cells would correspond
to the formation of “quantized vortices” at the Compton (Planck) scale from
the ZPF, as we saw, which latter had been discussed in detail in the literature
(Cf.[24] and [198]) from the ZPF. This phase transition would correspond to
the “formation” of spacetime. As discussed in detail in [24] these “quantized
vortices” can be identified with elementary particles. Interestingly, as noted
Einstein himself considered electrons as condensates from a background elec-
tromagnetic field[232]. All this ties up with the discussion in the previous
section.
However in order to demonstrate that the above formulation is not a mere
mathematical analogy, we have to show that the critical value of the wave
number k in the expression for the velocity in the hydrodynamical flow (6.68)
is the same as the critical length, the Compton length. In terms of the di-
mensionless wave number k′ = k/d, this critical value is given by[266]

k′
c ∼ 1

In the case of the “quantized vortices” at the Compton scale l, remembering
that d is identified with l itself we have,

l′c(≡)k′
c ∼ 1,

exactly as required.
In this connection it may be mentioned that due to fluctuations in the Zero
Point Field or the Quantum Vacuum, there would be fluctuations in the
metric given by[46]

∆g ∼ lP /l

where lP is the Planck length and l is a small interval under consideration.
At the same time the fluctuation in the curvature of space would be given by

∆R ∼ lP /l3

Normally these fluctuations are extremely small but as discussed in detail
elsewhere[168], this would imply that at the Compton scale of a typical el-
ementary particle l ∼ 10−11cms, the fluctuation in the curvature would be
∼ 1. This is symptomatic of the formation of what we have termed above as
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elementary particle “quantized vortices”.
Further if a typical time interval between the formation of such “quantized
vortices” which are the analogues of the Benard cells is τ , in this case the
Compton time, then as in the theory of the Brownian Random Walk[256],
the mean time extent would be given by

T ∼
√

Nτ (6.71)

where N is the number of such quantized vortices or elementary particles
(Cf.also [24, 265]). This is equation (6.4) - that is, the equation (6.71) holds
good for the Universe itself because T the age of the Universe ∼ 1017secs
and N the number of elementary particles ∼ 1080, τ being the Compton
time ∼ 10−23secs. Interestingly, this “phase transition” nature of time would
automatically make it irreversible, unlike the conventional model in which
time is reversible. We will return to these considerations later in this section.
It may be mentioned that an equation similar to (6.71) can be deduced by
the same arguments for space extension also as indeed we did, and this time
we get back the well known Eddington formula viz.,

R ∼
√

Nl (6.72)

where R is the extent or radius of the Universe and l is the cell size or Comp-
ton wavelength. We can similarly characterize the formation of elementary
particles themselves from cells at the Planck scale.
Once we recognize the minimum spacetime extensions, then we immediately
are lead to the underlying non commutative geometry encountered in the
earlier chapter and given by equation (6.27):

[x, y] = 0(l2), [x, px] = ıh̄̄[1 + 0(l2)], [t, E] = ıh̄̄[1 + 0(τ2) (6.73)

As we saw relations like (6.73) are Lorentz invariant. At this stage we recog-
nise the nature of spacetime as given by (6.27) in contrast to the stationary
and homogeneous spacetime discussed earlier. Witten [17, 269] has called this
Fermionic spacetime as contrasted with the usual Bosonic spacetime. Indeed
we traced the origins of the Dirac equation of the electron to (6.27). We also
argued that (6.27) provides the long sought after reconciliation between elec-
tromagnetism and gravitation[161, 162].
The usual differentiable spacetime geometry can be obtained from (6.27) if
l2 is neglected, and this is the approximation that has been implicit.
Thus spacetime is a collection of such cells or elementary particles. As pointed
out earlier, this spacetime emerges from a homogeneous stationary non or
pre spacetime when the symmetry is broken, through random processes. The
question that comes up then is, what is the metric which we use? This has
been touched upon earlier, and we will examine it again.
We first make a few preliminary remarks. When we talk of a metric or the
distance between two ”points” or ”particles”, a concept that is implicit is that
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of topological ”nearness” - we require an underpinning of a suitably Large
Number of ”open” sets[270]. Let us now abandon the absolute or background
spacetime and consider, for simplicity, a Universe (or set) that consists solely
of two particles. The question of the distance between these particles (quite
apart from the question of the observer) becomes meaningless. Indeed, this is
so for a Universe consisting of a finite number of particles. For, we could iso-
late any two of them, and the distance between them would have no meaning.
We can intuitively appreciate that we would infact need distances of inter-
mediate or more generally, other points.
In earlier work[271, 231], motivated by physical considerations we had con-
sidered a series of nested sets or neighbourhoods which were countable and
also whose union was a complete Hausdorff space. The Urysohn Theorem was
then invoked and it was shown that the space of the subsets was metrizable.
Let us examine this in more detail.
Firstly we observe that in the light of the above remarks, the concepts of
open sets, connectedness and the like reenter in which case such an isolation
of two points would not be possible.
More formally let us define a neighbourhood of a particle (or point or ele-
ment) A of a set of particles as a subset which contains A and atleast one
other distinct element. Now, given two particles (or points) or sets of points
A and B, let us consider a neighbourhood containing both of them, n(A,B)
say. We require a non empty set containing atleast one of A and B and atleast
one other particle C, such that n(A,B) ⊂ n(A,C), and so on. Strictly, this
”nested” sequence should not terminate. For, if it does, then we end up with
a set n(A,P ) consisting of two isolated ”particles” or points, and the ”dis-
tance” d(A,P ) is meaningless.
We now assume the following property[271, 231]: Given two distinct elements
(or even subsets) A and B, there is a neighbourhood NAN 1 such that A be-
longs to NAN 1 , B does not belong to NAN 1 and also given any NAN 1 , there exists
a neighbourhood NAN 1

2
such that A ⊂ NAN 1

2
⊂ NAN 1 , that is there exists an

infinite topological closeness.
From here, as in the derivation of Urysohn’s Lemma[272], we could define a
mapping f such that f(A) = 0 and f(B) = 1 and which takes on all inter-
mediate values. We could now define a metric, d(A,B) = |f(A) − f(B)|. We
could easily verify that this satisfies the properties of a metric.
With the same motivation we will now deduce a similar result, but with dif-
ferent conditions. In the sequel, by a subset we will mean a proper subset,
which is also non null, unless specifically mentioned to be so. We will also
consider Borel sets, that is the set itself (and its subsets) has a countable
covering with subsets. We then follow a pattern similar to that of a Cantor
ternary set [270, 273]. So starting with the set N we consider a subset N1NN
which is one of the members of the covering of N and iterate this process so
that N12NN denotes a subset belonging to the covering of N1NN and so on.
We note that each element of N would be contained in one of the series
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of subsets of a sub cover. For, if we consider the case where the element p
belongs to some N12NN ···m but not to N1NN ,2,3···m+1, this would be impossible be-
cause the latter form a cover of the former. In any case as in the derivation
of the Cantor set, we can put the above countable series of sub sets of sub
covers in a one to one correspondence with suitable sub intervals of a real
interval (a, b).
Case I
If N1NN ,2,3···m → an element of the set N as m → ∞, that is if the set is closed,
we would be establishing a one to one relationship with points on the interval
(a, b) and hence could use the metric of this latter interval, as seen earlier.
Case II
It is interesting to consider the case where in the above iterative countable
process, the limit does not tend to an element of the set N , that is set N is
not closed and has what we may call singular points. We could still truncate
the process at N1NN ,2,3···m for some m > L arbitrary and establish a one to one
relationship between such truncated subsets and arbitrarily small intervals in
a, b. We could still speak of a metric or distance between two such arbitrarily
small intervals.
This case is of interest because we described elementary particles as, what
we have called Quantum Mechanical Kerr-Newman black holeblack holes or
vortices, where we have a length of the order of the Compton wavelength as
seen in the previous sections, within which spacetime as we know it breaks
down. Such cut offs as seen lead to a non commutative geometry (6.27) and
what may be called fuzzy spaces[67, 46].(We note that the centre of the vor-
tex is a singular point). In any case, the number of particles in the Universe
is of the order 1080, which approximates infinity from a physicist’s point of
view.
Interestingly, we usually consider two types of infinite sets - those with cardi-
nal number n corresponding to countable infinities, and those with cardinal
number c corresponding to a continuum, there being nothing in between [273].
This is the well known but unproven Continuum hypothesis.
What we have shown with the above process is that it is possible to conceive
an intermediate possibility with a cardinal number np, p > 1.
In the above considerations three properties are important: the set must be
closed i.e. it must contain all its limit points, perfect i.e. in addition each of
its points must be a limit point and disconnected i.e. it contains no non null
open intervals. Only the first was invoked in Case I.
Finally we notice again the holistic feature. A metric emerges by considering
large encompassing sets. It may be remarked that much of Quantum The-
ory, like much of Classical Theory was couched in the concepts of Newtonian
two body mechanics and determinism. The moment we consider even a three
body problem, as was realized by Poincare more than a century ago, the pic-
ture gets altered. As he noted [274], “If we knew exactly the laws of nature
and the situation of the Universe at the initial moment, we could predict
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exactly the situation of that same Universe at a succeeding moment. But
even if it were the case that the natural laws had no longer any secret for
us, we could still know the situation approximately. If that enabled us to
predict the succeeding situation with the same approximation, that is all we
require, and we should say that the phenomenon had been predicted, that it
is governed by the laws. But it is not always so; it may happen that small
differences in the initial conditions produce very great ones in the final phe-
nomena. A small error in the former will produce an enormous error in the
latter. Prediction becomes impossible.” In a similar vein, Prigogine observes
[268], “Our physical world is no longer symbolized by the stable and periodic
planetary motions that are at the heart of classical mechanics. It is a world
of instabilities and fluctuations...”
Indeed, the departure from the two body formulation began with electromag-
netism itself, which has to invoke the environment.
We now return to the current view of Planck scale oscillators in the back-
ground dark energy or Quantum Vacuum. In this context we saw in the last
Chapter that elementary particles can be considered to be normal modes
of n ∼ 1040 Planck oscillators in the ground state, while the entire Uni-
verse itself has an underpinning of N̄ ∼ 10120 such oscillators, there being
N ∼ 1080 elementary particles in the Universe [187, 249]. These Planck os-
cillators are formed out of the Quantum Vacuum (or dark energy). Thus we
have, mP c2 being the energy of each Planck oscillator, mP being the Planck
mass, ∼ 10−5gms,

m =
mP√

n
(6.74)

l =
√

nlP , τ =
√

nτPτ , n =
√

N (6.75)

where m is the mass of a typical elementary particle, taken to be a pion in
the literature. The ground state of N̄ such Planck oscillators would be, in
analogy to (6.74),

m̄ =
mP√

N
∼ 10−65gms (6.76)

The Universe is an excited state and consists of N such ground state levels
and so we have, from (6.76)

M = mN¯ =
√

NmP ∼ 1055gms,

as required, M being the mass of the Universe.
Due to the fluctuation ∼ √

n in the levels of the n oscillators making up an
elementary particle, the energy is, remembering that mc2 is the ground state,

∆E ∼ √
nmc2 = mP c2,

using (6.75), and so the indeterminacy time is

h̄̄

∆E
=

h̄̄

mP c2
= τPτ ,
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as indeed we would expect.
The corresponding minimum indeterminacy length would therefore be lP .
One of the consequences of the minimum spacetime cut off as we saw is that
the Heisenberg Uncertainty Principle takes an extra term as we saw in the
previous Chapter [145]. Thus as we saw

∆x ≈ h̄̄

∆p
+ α

∆p

h̄̄
, α = l2(or l2P ) (6.77)

where l (or lP ) is the minimum interval under consideration. This is just
(6.28). The first term gives the usual Heisenberg Uncertainty Principle.
Application of the time analogue of (6.77) for the indeterminacy time ∆t
for the fluctuation in energy ∆Ē =

√
Nmc2 in the N particle states of the

Universe gives exactly as above,

∆t =
∆E

h̄̄
τ2
Pτ =

√
Nmc2

h̄̄
τ2
Pτ =

√
NmP c2

√
nh̄̄

τ2
Pτ =

√
nτPτ = τ,

wherein we have used (6.75). In other words, for the fluctuation
√

N , the time
is τ . It must be re-emphasized that the Compton time τ of an elementary
particle, is an interval within which there are unphysical effects like zitterbe-
wegung - as pointed out by Dirac, it is only on averaging over this interval,
that we return to meaningful Physics. This gives us,

dN/dt =
√

N/τ (6.78)

Equation (6.78) is identical to (6.3), the starting point for the cosmology
discussed. Here we have derived this relation from a consideration of the
underlying Planck oscillators. On the other hand due to the fluctuation in the√

N̄ oscillators constituting the Universe, the fluctuational energy is similarly
given by √

N̄m̄c2,

which is the same as (6.76) above. Another way of deriving (6.78) is to ob-
serve that as

√
n particles appear fluctuationally in time τPτ which is, in the

elementary particle time scales,
√

n
√

n =
√

N particles in
√

nτPτ = τ . That
is, the rate of the fluctuational appearance of particles is(√

n

τPτ

)
=

√
N

τ
= dN/dt

which is (6.78). From here by integration,

T =
√

Nτ

T is the time elapsed from N = 1 and τ is the Compton time. This gives
T its origin in the fluctuations - there is no smooth “background” (or “be-
ing”) time - the root of time is in “becoming”. It is the time of a Brownian
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double Wiener process: A step l gives a step in time l/c ≡ τ and therefore
∆x =

√
Nl gives T =

√
Nτ . Time is born out of acausal fluctuations which

are random and therefore irreversible. Indeed, there is no background time.
Time is proportional to

√
N , N being the number of particles which are being

created spontaneously from the ZPF.
The time we use is what may be called Stationary time and it is an approxi-
mation as we saw [178]. Further, Quantum Mechanics, gravitation etc. follow
from here. In Quantum Mechanics, the measurement of the observer triggers
the acausal collapse of the wave function - an irreversible event - but the wave
function itself satisfies a deterministic and reversible equation paradoxically.
Yet the Universe is “irreversible”. It appears spontaneous irreversibility or
indeterministic time [275] is the real time. This can be contrasted to the
usual time reversible Quantum Theory.
We observe that [276]

ψ(r, t) =
1

(2πh̄̄)3/2

∫
a(p) exp

[
ı

h̄̄

(
p · r − p2

2m
t

)]
dp,

a(p) being independent of time. So we have at any other time t′:

a(p) =
1

(2πh̄̄)3/2

∫
ψ(r′, t′) exp

[
− ı

h̄̄

(
p · r′ − p2

2m
t′
)]

dr′

Substitution yields the result

ψ(r, t) =
∫

K(r, t′; r′, t′)ψ(r′, t′)dr′, (6.79)

the Kernel function K being given by

K(r, t; r′, t′) =
1

(2πh̄̄)3

∫
exp

{
ı

h̄̄

[
p

[[
· (r − r′) − p2

2m
(t − t′)

]}
dp

or after some manipulation, in the form

K(r, t; r′, t′) =
[
2πıh̄̄

m
(t − t′)

]−3/2

exp
[
ı
m

2h̄̄

|r − r′|2
(t − t′)

]

The point is that in (6.79) ψ(r, t) at t is given in terms of a linear expansion of
ψ(r, t′) at earlier times t′. But what is to be noted is, the symmetry between
t and t′. This is not surprising as the original Schrödinger equation remains¨
unchanged under t → −t.
Thus it is possible to understand the fluctuations encountered in Section 2,
that is, the equation (6.78) which was the starting point for fluctuational en-
ergy in terms of the underpinning of Planck scale oscillators in the Quantum
Vacuum.
We would now like to make some remarks. Starting from a completely dif-
ferent point of view namely Black Hole Thermodynamics, Landsberg [277]
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deduced that the smallest observable mass in the Universe is ∼ 10−65gms,
which is exactly the minimum mass given in (6.76).
Further due to the fluctuational appearance of

√
N particles, the fluctuational

mass associated with each of the N particles in the Universe is
√

Nm

N
=

m√
N

∼ 10−65gms,

that is once again the smallest observable mass or ground state mass in the
Universe.

6.5 Further Considerations

1. We will now provide yet another rationale for (6.3) or (6.78). Let us start
with equations encountered earlier, viz., (6.9), (6.8) and (6.7) respectively

R =
√

Nl

Gm2

e2
=

1√
N

∼ 10−40

or the Weinberg formula

m =
(

Hh̄̄2

Gc

) 1
3

where N ∼ 1080 is the number of elementary particles, typically pions, in
the Universe. On the other hand (6.8) which is the ratio of the electromag-
netic and gravitational coupling constants, is deducible from (6.7). The very
mysterious feature of (6.7) was stressed by Weinberg as we saw “...it should
be noted that the particular combination of h̄, H, G¯̄ , and c appearing (in the
formula) is very much closer to a typical elementary particle mass than other
random combinations of these quantities....
In contrast, (the formula) relates a single cosmological parameter, H, to the
fundamental constants h,G, c¯̄ and m, and is so far unexplained...”
Relations like (6.9) and (6.8) inspired the Dirac Large Number Cosmology.
All these relations are to be taken in the order of magnitude sense.
We will now take a different route and provide an alternative theoretical ra-
tionale for equations (6.71), (6.8) and (6.9), and in the process light will be
shed on the new cosmological model and the nature of gravitation.
Following Sivaram [33] we consider the gravitational self energy of the pion.
This is given by

Gm2

l
= Gm2/(h̄/mc¯̄ )

If this energy were to have a life time of the order of the age of the Universe,
T , then we have by the Uncertainty relation
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Gm3c

h̄̄

)
(T ) ≈ h̄̄ (6.80)

As T = 1
H , this immediately gives us the Weinberg formula (6.7). It must be

observed again that (6.80) gives a time dependent gravitational constant G.
We could also derive (6.7) by using a relation given by Landsberg [277]. We
use the fact that the mass of a particle is given by

m(b) ∼
(

h̄̄3H

G2

)1/5 (
c5

hH¯̄ 2G

)b/15

(6.81)

where b is an unidentified constant. Whence we have

m(b) ∼ G−3/5G−3b/15 = G−(b+1)/5

The mass that would be time independent, if G were time dependent would
be given by the value

b = −1

With this value of b (6.81) gives back (6.7).
Let us now proceed along a different track. We rewrite (6.80) as

G =
h̄̄2

m3c
· 1
T

(6.82)

If we use the fact that R = cT , then (6.82) can be written as

G =
h̄̄2

m3R
(6.83)

Let us now use the well known relation encountered earlier [59]

R =
GM

c2
, (6.84)

There are several derivations of (6.84). For example in a uniformly expanding
Friedman Universe, we have

Ṙ2 =
8πGρR2

3

If we substitute the value Ṙ = c at the radius of the Universe, then we recover
(6.84). If we use (6.84) in (6.83) we will get

G2 =
h̄̄2c2

m3M
(6.85)

Let M/m = N be called the number of elementary particles in the Universe.
Infact this is just (1). Then (6.85) can be written as (6.10),
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G =
hc¯̄

m2
√

N

which can also be written as (6.8)

Gm2/e2 ∼ 1√
N

Whence we get (6.9) √
Nl = R

We now remark that (6.82) shows an inverse dependence on time of the grav-
itation constant, while (6.10) shows an inverse dependence on

√
N . Equating

the two, we get back,
T =

√
Nτ

the relation (6.4) which we have encountered several times. If we now take
the time derivative of (6.10) and use (6.4), we get (6.3)

Ṅ =
√

N

τ

This equation is the same as (6.78) or (6.3). To put it briefly in a phase tran-
sition from the Quantum Vacuum

√
N particles appear within the Compton

time τ . In terms of our unidirectional concept of time, we could say that
particles appear and disappear, but the nett result is the appearance of

√
N

particles.
We now make a few remarks. Firstly it is interesting to note that

√
Nm

will be the mass added to the Universe. Let us now apply the well known
Beckenstein formula for the life time of a mass M viz., [59],

t ≈ G2M3/hc¯̄ 4

to the above mass. The life time as can be easily verified turns out to be
exactly the age of the Universe!
A final remark. To appreciate the role of fluctuations in the otherwise mys-
terious Large Number relations, let us follow Hayakawa [234] and consider
the excess of electric energy due to the fluctuation ∼ √

N of the elementary
particles in the Universe and equate it to the inertial energy of an elementary
particle. We get √

Ne2

R
= mc2

This gives us back (6.8) if we use (6.84). If we use (6.9) on the other hand,
we get

e2/mc2 = l,

another well known relation from micro physics.
2. We note that as is well known, a background ZPF of the kind we have
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been considering can explain the Quantum Mechanical spin half as also the
anomalous g = 2 factor for an otherwise purely classical electron [278, 279,
226]. The key point here is (Cf.ref.[278]) that the classical angular momentum
r × mv does not satisfy the Quantum Mechanical commutation rule for the
angular momentum J . However when we introduce the background Zero
Point Field, the momentum now becomes

J = r × m = v + (e/2c)r × (B × r) + (e/c)r × A0, (6.86)

where A0 is the vector potential associated with the ZPF and B is an ex-
ternal magnetic field introduced merely for convenience, and which can be
made vanishingly small.
It can be shown that J in (6.86) satisfies the Quantum Mechanical commu-
tation relation for J × J . At the same time we can deduce from (6.86)

〈JzJ 〉 = −1
2
hω¯̄ 0/|ω0| (6.87)

Relation (6.87) gives the correct Quantum Mechanical results referred to
above.
From (6.86) we can also deduce that

l = 〈r2〉 1
2 =

(
h̄̄

mc

)
(6.88)

(6.88) shows that the mean dimension of the region in which the fluctuation
contributes is of the order of the Compton wavelength of the electron. By
relativistic covariance (Cf.ref.[279]), the corresponding time scale is at the
Compton scale. Thus once again we return to the Compton scale, as at the
beginning of this Chapter.
3. In the light of the preceding considerations, let us now investigate the
neutrino and weak interactions. We start by following Hayakawa [234] to
balance the gravitational force and the Fermi energy of the “cold” background
neutrinos and further identify it with the intrinsic energy of the neutrinos to
get

GNνNN m2
ν

R
=

N
2/3
νNN h̄̄2

mνR2
= mνc2 (6.89)

(All this is in the Large Number sense) mν is the neutrino mass. From (6.89)
we can immediately deduce that

mν = 10−8me, NνNN ∼ 1090 (6.90)

Both the relations in (6.90) are known to be correct.
We then use the fact that due to the fluctuation in the number of neutrinos,
we have an energy which is the inertial energy again:

ḡ2
√

NνNN

R
≈ mνc2 (6.91)
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where ḡ2 gives the weak interaction coupling constant.
Interestingly we saw a similar relation for the electrons

e2
√

N

R
= mc2 (6.92)

From (6.91) and (6.92) on using (6.90) we get

ḡ2/e2 ∼ 10−13 (6.93)

which ofcourse is again known to be correct.
We have thus recovered from theory the well known values of the weak cou-
pling constant and the neutrino mass. We would next like to show that there
is a complete parallel between the Large Number Relations for elementary
particles with similar relations for the neutrino. We start with the simplest
relation, which can be easily verified

NνNN mν = Nm = M = 1055gm,

M being the mass of the Universe. We next return to the fact used above in
(6.89) and consider the equality of the gravitational mass of a particle due
to the remaining n particles with the inertial mass of the particle

Gnm2

r
= mc2 (6.94)

In (6.94), if n is replaced by N and r is replaced by the radius of the Universe,
we get the mass of an elementary particle like the pion. On the other hand
if in (6.94) we replace n by the number of neutrinos NνNN instead of N then
we recover the mass of the neutrino. Finally if we take n = 1 and r = lP , the
Planck scale we recover the Planck mass mP , which indeed is to be expected
because as Rosen had shown and we saw earlier, the Planck mass Black Hole
is a Universe in itself [47].
Similarly we see the complete parallel between (6.91) and (6.92). To proceed
further we consider (6.10) in an alternative form viz.,

h̄̄ =
Gm2

√
N

c
(6.95)

For the neutrino number and neutrino mass given in (6.90), (6.95) gives

h̄̄′ =
Gm2

ν

√
NνNN

c
= 10−12h̄̄ (6.96)

(6.96) shows that the magnetic moment of the neutrino is given by

µν ∼ 10−11 Bohr magnetons (6.97)

Indeed (6.97) is consistent with observation [280]. That is for the neutrino
we have effectively h̄̄̄′ given by (6.96), instead of h̄̄̄. It is then simple to verify
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that the analogue of the Eddington formula (6.9) applies for the neutrinos
viz.,

R =
√

NνNN lν ,

where lν = h̄̄′
mνc , the neutrino analogue of the Compton length.

It has been shown on the basis of Black Hole radiation life times that we have

Gm2

l
=

h̄̄

T
, T = 1017sec (6.98)

where T is the life time of the Universe (Cf. also [33]). Indeed as we saw (6.98)
is just a variant of the Weinberg formula, and can now be interpreted as the
fact that the gravitational self energy of the elementary particle, viz., Gm2

l
has a life time of the order of the age of the Universe, due to the Uncertainty
Principle. It can immediately be verified that for the neutrino we have the
equation

Gm2
ν

lν
=

h̄̄′

T
(6.99)

In the author’s model, it has been shown that [24] the pion can be considered
to be an electron positron bound state so that we have

l =
e2

mec2
(6.100)

where l is the pion Compton wavelength. Similarly one could consider the
pion to also be the bound state of a quark anti-quark in QCD so that we
have

g2

mqc2
= l (6.101)

where mq is the quark mass and g2 is the strong interaction coupling constant.
There is an immediate analogue of (6.100) and (6.101) for the neutrino viz.,

lν =
ḡ2

mνc2
(6.102)

Finally it may be pointed out that there is an immediate analogue of the
Weinberg formula (6.7) viz.,

mν =
(

Hh̄̄′2

Gc

)1/3

(6.103)

It must be mentioned that these analogues like (6.91), (6.96), (6.99), (6.102)
and (6.103) between the neutrino and an elementary particle are not mere nu-
merical coincidences. This is because the various relations for the elementary
particles are the result of a theoretical structure, and are not mere accidents.
What the foregoing means is that the neutrino has a similar theoretical struc-
ture.
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To see this in greater detail, we note that in the case of the Planck scale un-
derpinning for the Universe of elementary particles, as was discussed earlier
in the previous Chapter, we have,

r =
√

N∆x2

kl2P ≡ k∆x2 =
1
2
kBT (6.104)

where kB is the Boltzmann constant, T the temperature, r the extent and k
which resembles the spring constant is given by

ω2
0 =

k

m

where ω0 is the frequency of a Planck mass viz.,

mP c2

h̄̄

In the case of elementary particles it was shown that with r ∼ l the pion
Compton wavelength we get

kBT =
m3c4l2

h̄̄2 = mc2, (6.105)

This as noted agrees with the Hagedorn temperature for elementary parti-
cles. For the neutrino a similar argument using the above equations includ-
ing (6.104) gives, with the neutrino parameters mν , lν and h̄̄̄′ substituted in
(6.105),

kBT = mνc2 (6.106)

Equation (6.106) gives for the neutrino mass

T ∼ 1◦K (6.107)

which corresponds to the “cold” cosmic background temperature. This is
completely consistent with our starting point in (6.89), where we consider
the Fermi energy of the “cold” cosmic neutrinos. Infact the Fermi energy
term in (6.89) (or the temperature (6.107)) is the only difference between
elementary particles and neutrinos - this is what leads to different values for
mν , NνNN etc. as compared to m, N etc.
We have seen that the weak interactions given by the coupling constant in
(6.93) is a parallel of the electromagnetic interaction. Ofcourse in the stan-
dard electroweak theory [85] the neutrino mass is taken to be zero. However
after the SuperKamiokande experiments, it has been realised that some mod-
ification in the standard model is required. We have seen above that it is the
“cold” cosmic background or equivalently the Fermi energy which gives the
neutrino its mass on the one hand and the weak interaction on the other.
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Further as can be seen from (6.91) and (6.92) the origin of the weak and
the electromagnetic interaction is the same viz., the fluctuation in particle
number in the Universe.
If we observe the parallel in the equations (6.100), (6.101) and (6.102), we
can interpret (6.102) as describing a bound state of two neutrinos. The re-
sult is a particle of Compton wavelength lν , that is a heavy particle of mass
104m. Such a particle would ofcourse be very shortlived. Indeed particles of
this order of mass, for example the ∗γ resonances are known [281].
Finally it must be noted that the much smaller mass of the neutrino - approx-
imately a vanishing mass - causes the four component Dirac electron equation
to split into two component neutrino equations, as in standard theory, and
thus gives the neutrino its handedness.
In summary we have shown that the neutrino can be described as a “cold”
(old) electron.

6.6 A Final Comment

We have alluded to relations like (6.4), (6.7),(6.8), (6.9) and (6.10), the so
called Large Number relations. In all these cases it turns out that T , the age of
the Universe is proportional to a suitable power of N the number of particles
in the Universe. Rather than dismiss these relations as mere coincidences,
Dirac suspected that these pointed to a relationship with time. In his words
[282]: “I call this principle the

LargeNumbersHypothesis

According to it, all the very large dimensionless numbers, which turn up in
Nature, are related to one another, just like t = 7 × 1039 and e2/Gmemp.
There is one further very large dimensionless number which we have to take
into consideration. That is the total mass of the Universe when expressed in
units of, say, the proton mass. That will be, if you like, the total number of
protons and neutrons in the Universe. It may be, of course, that the Universe
is infinite and that, therefore, this total number is infinite. In that case we
should not be able to talk about it. Yet we can use another number to replace
it. We need only consider that portion of the Universe which is sufficiently
close to us for the velocity of recession to be less than, let us say, half the
velocity of light. We are then considering just a certain chunk of this infinite
Universe, for which recession velocities are less than half the velocity of light.
We then ask, what is the total mass of this chunk of the Universe? That again
will be a very Large Number and will replace the total mass of the Universe,
to give us a definite number when the Universe is infinite.
We may try to estimate this total mass using the mass of those stellar objects
which we can observe, and making an allowance for unobservable matter. We
do not know very well how big that allowance should be: there may be quite



114 6 THE UNIVERSE OF FLUCTUATIONS

a lot of unobservable matter in the form of intergalactic gas or Black Holes
or things like that. Still, it is probable that the amount of Dark Matter is
not very much greater than the amount of visible matter. If you make an
assumption of that kind, you find that the total mass, in terms of the proton
mass, is

total mass
proton mass

= 1078,

with a suitable factor allowed for the invisible matter. We, therefore get a
number which is, roughly, the square of t (in atomic units).
Now, according to the Large Number Hypothesis, all these very large di-
mensionless numbers should be connected together. We should then expect
that

total mass
proton mass

= 1078 :: t2,

Using the same argument again, we are therefore led to think that the total
number of protons in the Universe is increasing proportionally to t2. Thus,
there must be creation of matter in the Universe, a continuous creation of
matter.
There have been quite a number of cosmological theories working with con-
tinuous creation of matter. A theory like that was very much developed by
Hoyle and others. The continuous creation which I am proposing here is en-
tirely different from that. Their continuous creation theory was introduced
as a rival to the Big Bang theory, and it is not in favor at the present time.
The continuous creation which I have here is essentially different from Hoyle’s
continuous creation, because Hoyle was proposing a steady state of the Uni-
verse, with continuous creation to make up for the matter which is moving
beyond our region of vision by the expansion. In his steady-state theory, he
had G constant. Now, in the present theory, G is varying with time, and that
makes an essential difference.
I propose a theory where there is continuous creation of matter, together
with this variation of G. Both the assumption of continuous creation and the
variation of G follow from the Large Number Hypothesis.
This continuous creation of matter must be looked upon as something quite
independent of known physical processes. According to the ordinary physical
processes, which we study in the laboratory, matter is conserved. Here we
have direct nonconservation of matter. It is, if you like, a new kind of ra-
dioactive process for which there is nonconservation of matter and by which
particles are created where they did not previously exist. The effect is very
small, because the number of particles created will be appreciable only when
we wait for a very long time interval compared with the age of the Universe.”
There was an inconsistency in this Dirac cosmology, namely the relation,

R ∝ T 1/3.

He vacillated over the decades between versions using the conservation of
energy and also violating it.
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In our cosmology, using fluctuations, all these apparently disparate relations
are derived from underlying principles, not to mention the prediction of a dark
energy driven accelerating Universe with a permissible cosmological constant.
That is what science is all about - finding a minimum set of principles to
explain a maximal set of observations.
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“The world is a 3 + 1 dimensional metrical manifold; all physical
field-phenomena are expressions of the metrics of the world”

H. Weyl

7.1 Introduction

We have already seen in Chapter 5 that, based on a discrete spacetime non-
commutative geometrical approach, it was possible to reconcile electromag-
netism and gravitation [161]. It is of course well known that nearly ninety
years of effort has gone in to get a unified description of electromagnetism
and gravitation starting with Hermann Weyl’s original Gauge Theory. It is
only in the recent years as noted that approaches in Quantum Gravity and
Quantum Superstrings, amongst a few other theories are pointing the way to
a reconciliation of these two forces. These latest theories discard the differ-
entiable spacetime of earlier approaches and rely on a lattice like approach
to spacetime, wherein there is a minimum fundamental interval which re-
places the point spacetime of earlier theories. Indeed to again quote ’t Hooft,
“It is some what puzzling to the present author why the lattice structure of
space and time had escaped attention from other investigators up till now....”
[24, 151, 152] Infact we will see that within this approach, it is possible to get a
rationale for the De Broglie wavelength and the mysterious Bohr-Sommerfeld
quantization relations as well [163]. Nevertheless, the link with the gauge the-
ories of other interactions, based as they are, on spin 1 particles, is not clear,
because the graviton is a spin 2 particle (or alternatively, the gravitational
metric is a tensor).

7.2 A Gauge like Formulation

In this latter context, we will now argue that it is possible for both electro-
magnetism and gravitation to emerge from a gauge like formulation [283].

generalization of Weyl’s original geometry, we generalize, as is well known,
In Gauge Theory, which as we saw in Chapter 2, is a Quantum Mechanical

117
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the original phase transformations, which are global with the phase λ being
a constant, to local phase transformations with λ being a function of the
coordinates [284]. As is well known this leads to a covariant gauge derivative.
For example, the transformation arising from (xµ) → (xµ + dxµ),

ψ → ψe−ıλ (7.1)

leads to the familiar electromagnetic potential gauge,

Aµ → Aµ − ∂µλ (7.2)

The above transformation, ofcourse, is a symmetry transformation. In the
transition from (7.1) to (7.2), we expand the exponential, retaining terms
only to the first order in coordinate differentials.
Let us now consider the case where there is a minimum cut off in the spactime
intervals. As we saw this leads to a noncommutative geometry (Cf.ref.[161])

[dxµ, dxν ] = O(l2) (7.3)

where l is the minimum scale. From (7.3) it can be seen that if O(l2) is
neglected, we are back with the familiar commutative spacetime. The new
effects of fuzzy spacetime arise when the right side of (7.3) is not neglected.
Based on this we had argued in Chapter 5 that it is possible to reconcile
electromagnetism and gravitation [162, 71, 285, 187]. If in the transition
from (7.1) to (7.2) we retain, in view of (7.3), squares of differentials, in the
expansion of the function λ we will get terms like

{∂µλ} dxµ + (∂µ∂ν + ∂ν∂µ) λ · dxµdxν (7.4)

where we should remember that in view of (7.3), the derivatives (or the prod-
uct of coordinate differentials) do not commute as indeed we saw in Chapter
5. As in the usual theory the coefficient of dxµ in the first term of (7.4) repre-
sents now, not the gauge term but the electromagnetic potential itself: Infact,
in this noncommutative geometry, it can be shown that this electromagnetic
potential reduces to the potential in Weyl’s original gauge theory [283, 162].
Without the noncommutativity, the potential ∂µλ would lead to a vanishing
electromagnetic field. However as we saw Dirac pointed out in his famous
monopole paper in 1930 that a non integrable phase λ(x, y, z) leads as above
directly to the electromagnetic potential, and moreover this was an alterna-
tive formulation of the original Weyl theory [195, 194].
Returning to (7.4) we identify the next coefficient with the metric tensor
giving the gravitational field:

ds2 = gµνdxµdxν = (∂µ∂ν + ∂ν∂µ) λdxµdxν (7.5)

Infact one can easily verify that ds2 of (7.5) is an invariant. We now specialize
to the case of the linear theory in which squares and higher powers of the
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deviation from the Minkowski metric, hαβ can be neglected. In this case it
can easily be shown that

2Γ β
µνΓ = hβµ,ν + hνβ,µ − hµν,β (7.6)

where in (7.6), the Γ s denote Christofell symbols. From (7.6) by a contraction
we have

2Γµ
µνΓ = hµν,µ = hµµ,ν (7.7)

If we use the well known gauge condition [5]

∂µ

(
hµν − 1

2
ηµνhµν

)
= 0, where h = hµ

µ

then we get
∂µhµν = ∂νhµ

µ ≡ ∂νh (7.8)

(7.8) shows that we can take the λ in (7.4) as λ = h, both for the electro-
magnetic potential Aµ and the metric tensor hµν . (7.7) further shows that
the Aµ so defined becomes identical to Weyl’s gauge invariant potential [6].
However it is worth reiterating that in the present formulation, we have a non-
commutative geometry, that is the derivatives do not commute and moreover
we are working to the order where l2 cannot be neglected. Given this con-
dition both the electromagnetic potential and the gravitational potential are
seen to follow from the gauge like theory. By retaining coordinate differen-
tial squares, we are even able to accommodate apart from the usual spin 1
gauge particles, also the spin 2 graviton which otherwise cannot be accom-
modated in the usual gauge theory. If however O(l2) = 0, then we are back
with commutative spacetime, that is a usual point spacetime and the usual
gauge theory describing spin 1 particles.
We had reached this conclusion in Chapter 5 (Cf. ref. [161]), though from a
different, non gauge point of view. The advantage of the present formulation
is that it provides a transparent link with conventional theory on the one
hand, and shows how the other interactions described by non Abelian gauge
theories smoothly fit into the picture.
Finally it may be pointed out that we had already argued that a fuzzy space-
time input explains why the purely classical Kerr-Newman metric gives the
purely Quantum Mechanical anomalous gyromagnetic ratio of the electron
[67, 154], thus providing a link between General Relativity and electromag-
netism. This provides further support to the above considerations.

7.3 Gauge Fields

Let us now return to the gauge field itself. As is well known, this could be
obtained as a generalization of the above phase function λ to include fields
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with internal degrees of freedom. For example λ could be replaced by Aµ

given by [93]
Aµ =

∑
ı

Aı
µ(x)Lı, (7.9)

The gauge field itself would be obtained by using Stoke’s Theorem and (7.9).
This is a very well known procedure: considering a circuit, which for simplicity
we can take to be a parallelogram of side dx and dy in two dimensions, we
can easily deduce the equation for the field, viz.,

FµνFF = ∂µAν − ∂νAµ − ıq[Aµ, Aν ], (7.10)

q being the gauge field coupling constant.
In (7.10), the second term on the right side is typical of a non Abelian gauge
field. In the case of the(U(1) electromagnetic field, this latter term vanishes.
Further as is well known, in a typical Lagrangian like

L = ıψ̄γµDµψ − 1
4
FµνFµνFF − mψ̄ψ (7.11)

D denoting the Gauge covariant derivative, there is no mass term for the
field Bosons. Such a mass term in (7.11) must have the form m2AµAµ which
unfortunately is not Gauge invariant.
This as we saw in Chapter 2, was the shortcoming of the original Yang-Mills
Gauge Theory: The Gauge Bosons would be massless and hence the need for
a symmetry breaking, mass generating mechanism.
The well known remedy for the above situation has been to consider, in anal-
ogy with superconductivity theory, an extra phase of a self coherent system
(Cf.ref.[93] for a simple and elegant treatment and also refs. [284] and [85]).
Thus instead of the gauge field Aµ, we consider a new phase adjusted gauge
field after the symmetry is broken

WµWW = Aµ − 1
q
∂µφ (7.12)

The field WµWW now generates the mass in a self consistent manner via a Higgs
mechanism. Infact the kinetic energy term

1
2
|Dµφ|2 , (7.13)

where Dµ in (7.13) denotes the Gauge , now becomes

|Dµφ0|2 = q2|WµWW |2|φ0|2 , (7.14)

Equation (7.14) gives the mass in terms of the ground state φ0.
The whole point is as follows: The symmetry breaking of the gauge field
manifests itself only at short length scales signifying the fact that the field is
mediated by particles with large mass. Further the internal symmetry space



7.3 Gauge Fields 121

of the gauge field is broken by an external constraint: the wave function has
an intrinsic relative phase factor which is a different function of spacetime
coordinates compared to the phase change necessitated by the minimum cou-
pling requirement for a free particle with the gauge potential. This cannot
be achieved for an ordinary point like particle, but a new type of a physical
system, like the self coherent system of superconductivity theory now inter-
acts with the gauge field. The second or extra term in (7.12) is effectively an
external field, though (7.14) manifests itself only in a relatively small spatial
interval. The φ of the Higgs field in (7.12), in analogy with the phase function
of Cooper pairs of superconductivity theory comes with a Landau-Ginzburg
potential V (φ).
Let us now consider in the gauge field transformation, an additional phase
term, f(x), this being a scalar. In the usual theory such a term can always
be gauged away in the U(1) electromagnetic group. However we now consider
the new situation of a noncommutative geometry referred to above,

[dxµ, dxν ] = Θµνβ, β ∼ 0(l2) (7.15)

where l denotes the minimum spacetime cut off. Equation (7.15) is infact
Lorentz covariant. Then the f phase factor gives a contribution to the second
order in coordinate differentials,

1
2

[∂µBν − ∂νBµ] [dxµ, dxν ]

+
1
2

[∂µBν + ∂νBµ] [dxµdxν + dxνdxµ] (7.16)

where Bµ ≡ ∂µf .
As can be seen from (7.16) and (7.15), the new contribution is in the term
which contains the commutator of the coordinate differentials, and not in the
symmetric second term. Effectively, remembering that Bµ arises from the
scalar phase factor, and not from the non-Abelian gauge field, in equation
(7.10) Aµ is replaced by

Aµ → Aµ + Bµ = Aµ + ∂µf (7.17)

Comparing (7.17) with (7.12) we can immediately see that the effect of non-
commutativity is precisely that of providing a new symmetry breaking term
to the gauge field, instead of the φ term, (Cf.refs. [242, 286]) a term not be-
longing to the gauge field itself.
On the other hand if we neglect in (7.15) terms ∼ l2, then there is no ex-
tra contribution coming from (7.16) or (7.17), so that we are in the usual
non-Abelian gauge field theory, requiring a broken symmetry to obtain an
equation like (7.17). This is not surprising because as noted several times if
we neglect the term ∼ l2 in (7.15) then we are back with the usual commu-
tative theory and the usual Quantum Mechanics.
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7.4 Quantum Geometry

As we saw in Chapter 5, one of the earliest attempts to unify electromag-
netism and gravitation, was Weyl’s gauge invariant geometry. The basic idea
was that while

ds2 = gµνdxµdxν (7.18)

was invariant under arbitrary transformations in General Relativity, a further
invariant, namely,

Φµdxµ (7.19)

which is a linear form should be introduced. gµν in (7.18) would represent the
gravitational potential, and Φµ of (7.19) would represent the electromagnetic
field potential.
A more modern treatment was considered (Cf. Chapter 5): the above arbi-
trary multiplying factor is normalized and we require that,

|gµν | = −1, (7.20)

For the invariance of (7.20), gµν transforms now as a tensor density of weight
minus half, rather than as a tensor in the usual theory. The covariant deriv-
ative then had to be redefined. This finally lead to

Φσ = Γ ρ
ρσΓ , (7.21)

Φµ in (7.21) is identified with the electromagnetic potential, while gµν gives
the gravitational potential as in the usual theory.
Unfortunately, as we saw gµν and Φµ are independent entities.
We then analyzed the above from a different perspective considering the
noncommutative geometry (7.3) or (7.15),

[dxµ, dxν ] ≈ l2 �= 0��
l being some fundamental minimum length. In this case as we saw, the anti-
symmetric part of gµν that is hµν under reflection, behaved as hµν → −hµν

as in the case of the tensor density metric tensor above.
We then argued that (7.15) lead to the Dirac equation - that is, the noncom-
mutative geometry manifests itself as, in the usual commutative formation,
the Dirac spinor:

ψ =
(

χ
Θ

)
, (7.22)

where χ and Θ are two spinors. Under reflection while the so called positive
energy spinor Θ in (7.22) behaves normally, χ → −χ, χ being the so called
negative energy spinor which we encountered at the Compton scale. So there
is now a covariant derivative near the Compton scale (in natural units),

∂χ

∂xµ
→

[
∂

∂xµ
− nAµ

]
χ (7.23)
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where, in (7.23),

Aµ = Γµσ
σΓΓ =

∂

∂xµ
log(

√
|g|) (7.24)

Γ denoting the Christofell symbols.
Aµ in (7.24) is now identified with the electromagnetic potential and we
recover (7.21).
That is the so called ad hoc feature in Weyl’s unification theory is really
symptomatic of the underlying noncommutative spacetime geometry (7.15)
or the double connectivity of space implied in (7.22). Given (7.15) we get
both gravitation and electromagnetism in a unified picture.
Let us now consider the above ideas in the context of the De Broglie-Bohm
formulation [163]. We start with the Schrödinger equation¨

ıh̄̄
∂ψ

∂t
= − h̄̄2

2m
∇2ψ + V ψ (7.25)

In (7.25), the substitution
ψ = ReıS/h̄̄ (7.26)

where R and S are real functions of r and t, leads to,

∂ρ

∂t
+ ∇ · (ρv) = 0 (7.27)

1
h̄̄

∂S

∂t
+

1
2m

(∇S)2 +
V

h̄̄2 − 1
2m

∇2R

R
= 0 (7.28)

where
ρ = R2,v =

h̄̄

m
∇S

and

Q ≡ − h̄̄2

2m
(∇2R/R) (7.29)

Using the theory of fluid flow, it is well known that (7.27) and (7.28) lead to
the Bohm alternative formulation of Quantum Mechanics (Cf.refs.[287, 198]
for a simple treatment). In this theory there is a hidden variable namely the
definite value of position while the so called Bohm potential Q in (7.29) can
be non local, two features which do not find favour with physicists. (In our
formulation however, the definite value of the position coordinate is fudged
by the fuzzyness of spacetime.)
It must be noted that in Weyl’s geometry, even in a Euclidean space there is
a covariant derivative and a non vanishing curvature R.
Santamato (Cf.refs. [288, 289, 290, 291]) exploits this latter fact, within the
context of the De Broglie-Bohm theory and postulates a Lagrangian given
by

L(q, q̇, t˙ ) = Lc(q, q̇, t˙ ) + γ(h̄̄̄2/m)R(q, t),
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He then goes on to obtain the equations of motion like (7.25),(7.26), etc. by
invoking an Averaged Least Action Principle

I(t0, t1) = E

{∫ t

t

∫∫
0

∫∫
L∗(q(t, ω), q̇(t, ω), t)dt

}

= minimum (7.30)

with respect to the class of all Weyl geometries of space with fixed metric
tensor. Equation (7.30) now leads to the Hamilton-Jacobi equation

∂t∂∂ S + HcHH (q,∇S, t) − γ(h̄̄̄2/m)R = 0, (7.31)

Equation (7.31) leads to the Schrödinger equation (in curvilinear coordinates)¨

ıh∂¯̄ lψ = (1/2m)
{
[(ıh/¯̄

√
g

√√
) ∂ı∂∂

√
gA

√√
ı] gık (ıh∂¯̄ k + Ak)

}
ψ

+
[
V − γ

(
h̄̄2/m

)
Ṙ

]
ψ = 0, (7.32)

As can be seen from (7.32), the Quantum potential Q is now given in terms
of the scalar curvature R.
We have already related the arbitrary functions Φ of Weyl’s formulation with
a noncommutative spacetime geometry (7.15).
This throws further light on Santamato’s postulative approach of extending
the De Broglie-Bohm formulation.
At an even more fundamental level, our formalism gives us the rationale for
the De Broglie wave length itself. Because of the noncommutative geometry
in (7.15) space becomes multiply connected, in the sense that a closed circuit
cannot be shrunk to a point within the interval. Let us consider the simplest
case of double connectivity. In this case, if the interval is of length L, we will
have,

Γ =
∫

c

∫∫
mV · dr = h

∫
c

∫∫
∇S · dr = h

∮
dS = mV πL = πh (7.33)

whence
L =

h

mV
(7.34)

We had encountered equations like (7.33) earlier in Chapter 5, but in the nar-
rower context of monopoles. In (7.33), the circuit integral was over a circle
of diameter L. Equation (7.34) shows the emergence of the De Broglie wave-
length. This follows from the noncommutative geometry of spacetime, rather
than the physical Heisenberg Uncertainty Principle. Remembering that Γ in
(7.33) stands for the angular momentum, this is also the origin of the Wilson-
Sommerfeld quantization rule, an otherwise mysterious Quantum Mechanical
prescription.
What we have done is to develop a Quantum Geometrical picture, based on
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(7.3) or (7.15).
We finally remark that as seen above and also in Chapter 5 the double con-
nectivity of space gives the Quantum Mechanical spin, while the non inte-
grability of the phase gives the electromagnetic field of the particle (Cf. also
[195]). Lastly the energy within this region with radius given by the Compton
wavelength, viz. ∫

ρc2dΩ = mc2,

that is we get the mass, as well (Cf. also ref.[24]).
In other words, the considerations of fuzzy spacetime or equivalently the
Kerr-Newman metric seen briefly in Chapter 1, yield at the Compton scale ,
the mass, spin and electromagnetic field of the elementary particle.



8 HOW FUNDAMENTAL IS
GRAVITATION?

“The existence of gravity clashes with our description of the rest of physics
by quantum fields”

Edward Witten

8.1 Introduction

More than five thousand years ago, the Rig Veda repeatedly raised the ques-
tion: “How is it that though unbound the sun does not fall down?”
This was a question that puzzled thinking man over the millennia. Indian
scholars right up to Bhaskaracharya who lived about a thousand years ago
believed in some attractive force which was responsible for keeping the celes-
tial bodies from falling down.
The same problem was addressed by Greek thinkers about two thousand five
hundred years ago. They devised transparent material spheres to which each
of the celestial objects was attached - the material spheres prevented them
from falling down. Further, all motions were circular, for, the Greeks believed
that circles and spheres were perfect figures.
Unfortunately it was this answer to the age old question, which held up fur-
ther scientific progress till the time of Kepler, for even Copernicus accepted
the transparent material spheres.
Kepler had a powerful tool in the form of the accurate observations of Tycho
Brahe. He also had the advantage of the Indian numeral system, which via
the Arabs reached Europe just a few centuries earlier. These lead him to his
famous laws of elliptical orbits with definite periods correlated to distances
from the Sun.
This couching of natural phenomena in the terse language of mathematical
symbols that could be manipulated, was the beginning of modern science.
The important point was that the Greek answer to the problem of why heav-
enly objects do not fall down - the transparent material spheres - was now
demolished. The age old question of why celestial bodies do not fall down
came back to haunt again. Kepler himself speculated about some type of a
magnetic force between the Sun and the Planets, rather on the lines of earlier
speculations in India.

127
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It was Newton who provided the breakthrough.
To quote Hawking [300],“The Philosophiae Naturalis Principia Mathematica
by Isaac Newton, first published in Latin in 1687, is probably the most im-
portant single work ever published in the physical sciences. Its significance is
equalled in the biological sciences only by The Origin of Species. The origi-
nal impulse which caused Newton to write the Principia was a question from
Edmund Halley as to whether the elliptical orbits of the planets could be
accounted for on the hypothesis of an inverse square force directed towards
the Sun. This was something that Newton had worked out some years earlier
but had not published, like most of his work on mathematics and physics.
However, Halley’s challenge, and the desire to refute the suggestions of oth-
ers such as Hooke and Descartes, spurred Newton to try to write a proper
account of this result.”
Newton using Galileo’s ideas of Mechanics, thus stumbled upon the Universal
Law of Gravitation.
This held sway for nearly two hundred and twenty five years, before Ein-
stein came out with his own theory of gravitation. There was no force in the
mechanical sense that Newton and preceding scholars had envisaged it to
be. Rather it was due to the curvature of spacetime itself. Einstein’s bizarre
ideas have had some experimental verification while there are some other
experimental consequences, such as gravitational waves, which need to be
confirmed.
After Einstein’s formulation of gravitation a problem that has challenged
and defied solution has been that of providing a unified description of grav-
itation along with other fundamental interactions. Infact Einstein spent the
last decades of his life in this fruitless quest. As he said [107] “I have become
a lonely chap who is mainly known because he doesn’t wear socks and who
is exhibited as a curiosity on special occasions.”
One of the earliest attempts was as seen earlier that of Hermann Weyl, which
though elegant was rejected on the grounds that in the final analysis, it was
not really a unification of gravitation with electromagnetism but rather an
adhoc prescription.
Modern approaches to this problem have as discussed, finally lead to the
abandonment of a smooth spacetime manifold. Instead, the Planck scale is
now taken to be a minimum fundamental scale. This has been discussed in
Chapters 5 and 6.
We had argued from different points of view to arrive at the otherwise em-
pirically known equations [187, 249]

R =
√

N̄ lP =
√

Nl

l =
√

nlP (8.1)

where lP , l and R are the Planck length, the pion Compton wavelength and
the radius of the Universe and N̄ , N and n are certain Large Numbers. Some
of these are well known empirically for example N ∼ 1080 being the number
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of elementary particles, which typically are taken to be pions in the literature,
in the Universe.
One way of arriving at the above relations while not assuming any values for
n,N and N̄ a priori is by considering a series of N Planck mass oscillators
which are created out of the Quantum Vacuum. In this case (Cf. also ref.[301])
we have

r =
√

Na2 (8.2)

In (8.2) a is the distance between the oscillators and r is the extension and,
N is as yet unspecified. Equations (8.1) follow from equation (8.2).
There is another way of arriving at equations (8.1) (Cf.ref.[168]). For this, we
observe that the position operator for the Klein-Gordan equation is given by
[60],

Xop = xop − ıhc¯̄ 2

2
p

E2

Whence we get

X̂2
op ≡ 2m3c4

h̄̄2 X2
op =

2m3c6

h̄̄2 x2 +
p2

2m
(8.3)

It can be seen that purely mathematically (8.3) for X̂2
op defines the Harmonic

oscillator equation, this time with quantized, what may be called space levels.
It turns out that these levels are all multiples of ( h̄̄

mc )2. This Compton length
is the Planck length for a Planck mass. Accordingly we have for any system
of extension r,

r2 ∼ Nl2

which gives back equation (8.1). It is also known that the Planck length is
the Schwarzchild radius of a Planck mass, that is we have

lP = GmP /c2 (8.4)

Using equations (8.1) and (8.4), we will now deduce afresh a few new and
valid and a number of otherwise empirically known relations involving the
various microphysical parameters and large scale parameters, relations which
we encounter particularly in Chapters 5 and 6. Some of these relations are
deducible from the others. Many of these relations featured (empirically) in
Dirac’s Large Number Cosmology. We follow Dirac and Melnikov in consid-
ering l,m, h, l¯̄ P ,mP and e as microphysical parameters [80, 172] but in a
departure leaving out G from the list. Large scale parameters include the
radius and the mass of the Universe, the number of elementary particles in
the Universe, the Hubble consent and so on.
All this will enable us to reexamine the nature of gravitation. It must also be
observed again that the Large Number relations below are to be considered
in the Dirac sense, wherein for example the difference between the electron
and pion (or proton) masses is irrelevant [28].
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8.2 Interrelationships

We will use the following well known equation which has been obtained
through several routes:

GM

c2
= R (8.5)

For example in an uniformly expanding flat Friedman spacetime, we have
[28]

Ṙ2 =
8πGρR2

3

If we substitute Ṙ = c at the radius of the Universe in the above we recover
(8.5).
We now observe that from the first two relations of (8.1), using the Compton
wavelength expression we get

m = mP /
√

n (8.6)

This was equation (6.74) of Chapter 6. Using also the second relation in (8.1)
we can easily deduce

N̄ = Nn (8.7)

Using (8.1) and (8.5) we have

M =
√

N̄mP (8.8)

Interestingly (8.8) can be obtained directly, without recourse to gravitation
or (8.5), from the energy of the Planck oscillators as we saw in Chapter 5
(Cf.ref.[294]). Combining (8.8) and (8.6) we get

M =
(√

N̄n
)

m (8.9)

Further if we use in the last of equation (8.1) the fact that lP is the
Schwarzchild radius that is equation (8.4), we get,

G =
lc2

nm
(8.10)

We now observe that if we consider the gravitational energy of the N̄ Planck
oscillators (which do not have any other interactions) we get,

Gravitational Energy =
GN̄m2

P

R
(8.11)

If this is equated to the inertial energy in the Universe, Mc2, as can be
easily verified we get back (8.5). In other words the energy of the N̄ Planck
oscillators underlying the Universe, that is, its inertial energy content equals
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the gravitational energy of all the N̄ Planck oscillators.
Similarly if we equate the gravitational energy of the n Planck oscillators
constituting the pion we get

Gm2
P n

R
= mc2 (8.12)

Using in (8.12) equation (8.4) we get

lP mP n

R
= m

Whence it follows on using (8.7), (8.6) and (8.1),

n3/2 =
√

N, n =
√

N̄ (8.13)

Substituting the value for n from (8.13) into (8.10) we will get

G =
lc2

√
Nm

(8.14)

If we use (8.13) in (8.9) we will get

M = Nm, (8.15)

a relation we encountered in Chapter 6. Alternatively we could use (8.15)
which expresses the fact that the mass of the Universe is given by the mass
of the N elementary particles in it and deduce equations (8.12), (8.13) and
(8.14). Using the expressions for the Planck length as a Compton wavelength
and equating it to (8.4) we can easily deduce

Gm2 =
e2

n
=

e2

√
N

(8.16)

wherein we have also used h̄c¯̄ ∼ e2 and (8.6). Equation (8.16) is the empir-
ically well known equation which was used by Dirac in his Cosmology and
which we deduced in Chapter 6. Interestingly, as we have deduced (8.16),
rather than use it empirically, this points to a unified description of electro-
magnetism and gravitation as noted earlier.
Before proceeding further we make the following observations: Equation (8.9)
gives the inertial mass (or energy) of the Universe purely in terms of an
underpinning of Planck oscillators, without any reference to gravitation. In
essence, we have equated this to the energy of gravitation of the constituent
elementary particles in the Universe. Explicitly, we have,

√
N̄nmc2 =

GN̄m2
P

R

Using some of the preceding relations, this gives
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G =
lc2

nm
,

which is (8.10) (or (8.14)). Further, the universal underpinning of N̄ oscil-
lators manifests itself as N elementary particles, each with an underpinning
of n oscillators, interacting amongst themselves via the gravitational interac-
tion.
Interestingly also rewriting (8.14) as

G =
l2c2

Rm

wherein we have used (8.1) and further using the fact that H = c/R, where
H is the Hubble constant we can deduce

m ≈
(

Hh̄̄2

Gc

) 1
3

(8.17)

Equation (8.17) is the so called mysterious Weinberg formula, known empiri-
cally [28]. To quote Weinberg again, “...it should be noted that the particular
combination of h,H,G¯̄ , and c appearing (in the formula) is very much closer
to a typical elementary particle mass than other random combinations of
these quantities; for instance, from h̄, G¯̄ , and c alone one can form a single
quantity (h̄c/G¯̄ )1/2 with the dimensions of a mass, but this has the value
1.22× 1022MeV/c2, more than a typical particle mass by about 20 orders of
magnitude!
“In considering the possible interpretations (of the formula), one should be
careful to distinguish it from other numerical “coincidences”... In contrast,
(the formula) relates a single cosmological parameter, H, to the fundamental
constants h,G, c¯̄ and m, and is so far unexplained.”
We will come back to this point but remark that (8.14) brings out gravitation
in a different light- it appears as a distributional effect over the N elemen-
tary particles of the Universe, rather than as a microphysical constant. It is
a manifestation of N̄ underlying Planck oscillators, at the level of N elemen-
tary particles, as remarked. In fact all this shows up gravitation as the excess
or residual energy in the Universe.
Finally it may be observed that (8.14) can also be rewritten as

N =
(

c2l

mG

)2

∼ 1080 (8.18)

and so also (8.10) can be rewritten as

n =
(

lc2

Gm

)
∼ 1040

It now immediately follows that
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N̄ ∼ 10120

Looking at it this way, given G and the microphysical parameters we can
deduce from equations like (8.18) the numbers N, N̄ and n. So if gravitation
were indeed a microphysical fundamental constant, then we would be back
again with Weinberg’s long overlooked paradox: The number of particles in
the Universe would no longer be a free parameter, but rather would depend
on the fundamental constants.
To throw further light on this matter, we observe that the gravitational energy
of the N elementary particles if equated to its inertial energy, gives,

GN2m

R
= mc2

which immediately gives (8.5), or, if we use the Eddington formula

R =
√

Nl,

and the expression for the Hubble constant derived in Chapter 6 (equation
(6.11)),

H =
c

l
· 1√

N

to the Weinberg formula (8.17).
Or, we could directly consider the gravitational self interaction of a particle
(Cf.ref.[65] for details). Our starting point is the action functional

S = −(8πG)−1

∫
d4xφ∆2φ +

∫
d4xΨ∗

(
ıh̄̄

∂Ψ

∂t
+

h̄̄2

2m
∆2Ψ − mφΨ

)

where φ is some potential whose nature is not as yet specified, G being some
coupling constant. The extremum conditions of action with respect to Ψ∗ and
Ψ lead to the Schrödinger equation with the interaction potential¨ φ:

ıh̄̄
∂Ψ

∂t
= − h̄̄2

2m
∆2Ψ + mφΨ (8.19)

and to the Poisson equation for the potential itself

∆2φ = 4πGmΨ∗Ψ (8.20)

Thus, the equations (8.19) and (8.20) describe a self-interacting particle. It
is well known that an exact solution to (8.20) is given by

φ(r, t) = −G

∫
Ω

∫∫
dΩ(r)

ρ(r, t)
|r − r′| , (8.21)

where Ω is the three dimensional region which confines the particle, and we
have defined



134 8 HOW FUNDAMENTAL IS GRAVITATION?

ρ(r, t) = mΨ∗(r, t)Ψ(r, t) (8.22)

From (8.21), we can immediately see that for distances far outside the region
Ω, that is |r| << |r′|, the potential φ has the form

φ ≈ GM

r
, (8.23)

where r = |r|, and we have defined M as,

M =
∫

Ω

∫∫
dΩ(r)ρ(r, t) = m

∫
Ω

∫∫
dΩ(r)Ψ∗(r, t)Ψ(r, t) (8.24)

The integral on the right hand side of (8.24) is conserved in time due to
(8.19):

∂

∂t

∫
Ω

∫∫
dΩ(r)Ψ∗(r, t)Ψ(r, t) = 0 (8.25)

Thus the quantity M is constant, and we can interpret (8.23) and (8.24)
as follows. The attractive potential (8.23) is now the classical gravitational
potential, M is the gravitational mass, G being the gravitational constant. If
we prescribe the unit value to the above conserved functional and interpret
it as the norm square, I2, or the full probability

I2 =
∫

Ω

∫∫
dΩ(r)Ψ∗(r, t)Ψ(r, t) = 1, (8.26)

then the gravitational mass coincides with the inertial mass,

m = M, (8.27)

and the quantity (8.22) now can be interpreted as the mass probability den-
sity. The source term on the right side of (8.20) is equal to the particle
probability density itself.
Now, let us consider the self-consistent problem - the particle in its own
potential well. We cannot obtain an exact solution. However, we can approx-
imately describe some features of such a solution. The first assumption will
be that we deal only with a spherically symmetric wave function: Ψ = Ψ(r, t)
where r is a radial coordinate. Then the mass probability density has the
same dependence: ρ = ρ(r, t). It can be easily shown that for any spherical
mass distribution, the potential (8.21) is reducible to a simple form

φ(r, t) = G

∫ r

0

∫∫
dr′

m(r′, t)
r′2

−
∫ ∞

0

∫∫
dr′

m(r′, t)
r′2

, (8.28)

where we denote
m(r, t) = 4π

∫ r

0

∫∫
dr′r′2ρ(r′, t), (8.29)
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and m(r, t) is just the mass inside a ball of radius r. Certainly, the solution
(8.28) gives an exact formula (8.23) with the mass (8.27) for the point mass
distribution. Further, we shall use the value Φ instead of the potential φ:

φ(r, t) = mGΦ(r, t)

This allows us to rewrite (8.19) in the form

ı
2m

h̄̄

∂

∂t
Ψ + ∆2Ψ − 2m3G

h̄̄2 ΦΨ = 0 (8.30)

The coefficient of Φ in (8.30) has the dimensionality of inverse length. Thus,
we denote

lG =
h̄̄2

2m3G
, (8.31)

Equation (8.31) is nothing but (8.17) the Weinberg formula again if we iden-
tify lG with the radius of the Universe.
All this shows that the mass m of an elementary particle is very Machian,
rather than being microphysical, if G is microphysical. But in our model of
underlying Planck oscillators, it is m which is microphysical and G that is
distributional.
Finally we remark that if in (8.31) we take m to be the Planck mass then lG
becomes the Schwarzchild radius, in conformity with our earlier observation
that a Planck mass Black Hole is a mini Universe in itself.

8.3 Comments

Thus the many so called Large Number coincidences and the mysterious
Weinberg formula can be deduced on the basis of a Planck scale underpin-
ning for the elementary particles and the whole Universe. This was done
from a completely different point of view, namely using fuzzy spacetime and
fluctuations in the author’s 1997 model discussed in Chapter 6 a model that
successfully predicted as we saw a dark energy driven accelerating Universe
with a small cosmological constant [168, 24]. However the above treatment
brings out the primary role of the Planck scale oscillators in the Quantum
Vacuum.
We now briefly comment on an alternative treatment of gravitation, the
Sakharov-Zeldovich metric elasticity of space approach [295]. Essentially
Sakharov argues that the renormalization process in Quantum Field The-
ory which removes the Zero Point energies is altered in General Relativity
due to the curvature of spacetime, that is the renormalization or subtraction
no longer gives zero but rather there is a residual energy similar to the mod-
ification in the molecular bonding energy due to deformation of the solids.
We see this in a little more detail following Wheeler [46]. The contribution
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to the Lagrangian of the Zero Point energies can be given in a power series
as follows

L(r) = Ah̄̄

∫
k3dk + Bh̄̄(4)r

∫
kdk

+h̄̄̄[C((4)r)2 + Drαβrαβ ]
∫

k−1dk

+(higher-order terms). (8.32)

where A,B,C etc. are of the order of unity and r denotes the curvature. By
renormalization the first term in (8.32) is eliminated. According to Sakharov,
the second term is the action principle term, with the exception of some mul-
tiplicative factors. (The higher terms in (8.32) lead to corrections in Einstein’s
equations). Finally Sakharov gets

G =
c3

16πBh̄̄
∫

kdk
(8.33)

Sakharov then takes a Planck scale cut off for the divergent integral in the
denominator of (8.33). This immediately yields

G ≈ c3l2P
h̄̄

(8.34)

Infact using relations like (8.1), (8.6) and (8.13), it is easy to verify that
(8.34) gives us back (8.10).
According to Sakharov (and (8.34)), the value of G is governed by the Physics
of Fields and Particles and is a measure of the metrical elasticity at small
spacetime intervals. It must be emphasized that in this approach G is a mi-
crophysical constant.
However in our interpretation of (8.14), G appears as the expression of a
residual energy over the entire Universe: To reiterate, the entire Universe has
an underpinning of the N̄ Planck oscillators and is made up of N elemen-
tary particles, which again each have an underpinning of n Planck oscillators.
The n oscillator elementary particle is a stable ground state, the N̄ oscillator
Universe is not. It must be reiterated that (8.34) obtained from Sakharov’s
analysis shows up G as a microphysical parameter because it is expressed in
their terms. This is also the case in Dirac’s cosmology. This is also true of
(8.10) because n relates to the micro particles exclusively.
However when we use the relation (8.13), which gives n in terms of N , that
is links up the microphysical domain to the large scale domain, then we
get (8.14). With Sakharov’s equation (8.34), the mysterious nature of the
Weinberg formula remains. But once we use (8.14), we are effectively using
the large scale character of G – it is not a microphysical parameter. This is
brought out by (8.18), which is another form of (8.14). If G were a micro-
physical parameter, then the number of elementary particles in the Universe
would depend solely on the microphysical parameters and would not be a
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large scale parameter as noted. The important point is that G relates to ele-
mentary particles and the whole Universe [294]: To reiterate, the energy of the
Universe can be specified solely in terms of the underpinning of Planck oscil-
lators without any recourse to gravitation, as in (8.8), or it can be exhibited
equivalently as arising due to the gravitational interactions amongst the dif-
ferent particles of the Universe, as in (8.5). That is why (8.14) or equivalently
the Weinberg formula (8.17) relate supposedly microphysical parameters to
a cosmological parameter. Once the character of G as brought out by (8.14)
is recognized, the mystery disappears. This explains Weinberg’s paradox.

8.4 Gravitation as Weak Electromagnetism

The question that arises is, can we similarly consider the electromagnetic
interaction between elementary particles to be the residual energy of the
underpinning Planck oscillators, between elementary particles. In other words
in (8.14) if we replace N by a number P which is ∼ 0(1) then we should get
instead of Gm2 the gravitational coupling, e2 the electromagnetic coupling.
Infact we get

e2 ≈ lmc2 (8.35)

which is indeed true! This also brings out a fundamental difference between
the two interactions: electromagnetism deals with a few particles, that is,
P = N ∼ 1; whereas gravitation deals with the N ∼ 1080 particles of the
entire Universe.
We can further support the above characterization in equation (8.16) of grav-
itation as a form of “weak electromagnetism” (or “weak electric force”) or
electromagnetism as a form of strong gravitation as follows: (It must be borne
in mind that the terms weak electromagnetism and strong gravitation were
used several years ago in different contexts). Firstly we observe that an equa-
tion like (8.5) with a numerical factor 2 on the right side (which in the Large
Number context is not important) gives the Schwarschild radius of a Black
Hole of mass M . If Gm2,M for the moment being replaced by m, is sub-
stituted by e2 in (8.5), then we should get the corresponding “Schwarschild
radius” for electromagnetism treated as strong gravitation. Indeed we then
get (8.35) giving the Compton wavelength for the mass m. In other words
the Compton wavelength shows up as a non gravitational but rather “elec-
tromagnetic Schwarschild radius” on the scale of elementary particles.
Let us now consider the temperature and life time of a Black Hole in the
context of the Hawking-Beckenstein Radiation. In the usual theory we have
[59] in standard notation

T =
hc¯̄ 3

8πGkm
(8.36)

dm

dt
= − β

m2
, (8.37)
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where β is given by

β =
hc¯̄ 4

(30.8)3πG2

This leads to the usual Black Hole life time given by

t =
1
3β

m3 = 8.4 × 10−24m3secs, (8.38)

If now we carry out the substitution Gm2 → e2 in the above we have instead
of (8.36), the relation

kT ∼ mc2 (8.39)

Equation (8.39) is the well known relation encountered in Chapter 5 express-
ing the Hagedorn temperature of elementary particles [260]. Similarly instead
of (8.37) we will get

dm

dt
= − hc¯̄ 4

Θ3e4
m2, Θ3 = (30.8)3π

Whence we get for the life time

hc¯̄ 4

Θ3e4
t =

1
m

(8.40)

From (8.40) we get, for the pion, a life time

t ∼ 10−23secs,

which is the pion Compton time. So the Compton time shows up as an “elec-
tromagnetic Beckenstein Radiation life time.”
Thus for elementary particles, working within the context of gravitational
theory, but with a scaled up coupling constant, we get the meaningful rela-
tions (8.35), (8.40) and (8.39) giving the Compton length and Compton time
as also the Hagedorn temperature as the analogues of the Schwarzchild ra-
dius, radiation life time and Black Hole temperature obtained with the usual
gravitational coupling constant.
We now make the following remarks:
1. The role of the Planck scale in Quantum Gravity considerations as noted
in Chapter 5 is well known. We reiterate that what has been done is that
the same reasoning used in the theory of Black Holes within a purely grav-
itational framework can be extended to electromagnetic considerations, and
then this leads to the Compton scale of elementary particles. In this sense,
there is just a rescaling.
2. The Planck scale considerations, as has been noted lead to a modification
of the Uncertainty Principle (Cf. [165, 145] and several references therein).
There is now, as we saw, in addition to the usual Heisenberg Uncertainty
term, an additional term given by
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∆x = l2P
∆p

h̄̄
(8.41)

As the Uncertainty in the momentum ∆p ∼ √
nmP , given the fact that as

pointed out in the beginning there are n Planck oscillators defining a typical
elementary particle, we have from (8.41), as noted in Chapters 5 and 6,

l = l2P
√

n
mP c

h̄̄
=

√
nlP

which is just (8.1). So the modification of the Uncertainty relation due to
Planck scale considerations leads to the Compton scale.
3. Already we have referred to Sakharov’s formulation of gravitation in terms
of the background Zero Point Field (or Quantum Vacuum). In this context
let us recapitulate the following well known fact encountered in Chapter 6.
Due to the Zero Point oscillators, there is an electromagnetic field density
∆B over an interval L given by

(∆B)2 ∼ e2

L4
(8.42)

So the energy over an extension L = l is given from (8.42) by e2

l which is the
energy mc2 of the elementary particle itself,

e2

l
= mc2 (8.43)

If on the other hand we replace in (8.43) e2 by Gm2, we get, reverting to the
length L

Gm2

L
≈ mc2

whence
L ≈ Gm

c2
(8.44)

(8.44) shows that we can similarly obtain from the fluctuating background
Zero Point Field a Black Hole, infact a Planck scale Black Hole, it being well
known as we saw, that a Planck mass is a Schwarzchild Black Hole at the
Planck scale (Cf. also ref.[47]). From this point of view, Planck mass particles
(or oscillators) are created from the fluctuation of the Zero Point Field and
then lead up to elementary particles as indicated above. In any case, this
again brings out the interchangability, e2 → Gm2.
It is interesting to note that the substitution of Gm2 → e2 → g2

w for the
neutrino, gives us relations similar to (8.39) and (8.43) (the latter was noted
in Chapter 6). That is we get, this time,

T =
mhc¯̄ 3

8πg2
w

=
mhc¯̄ 3 · 1013

8π · e2
=

mec
2 · hc¯̄ · 105

8πe2
∼ 1◦,
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corresponding to the Cosmic Background temperature as we saw, and,

lv =
g2

ω

mνc2
,

as already encountered. (Conversely, if we use T ∼ 1◦K, then we recover
g2

ω ∼ 10−13e2). The whole point is that as we also saw in Chapter 6, there is
a complete parallel between the neutrino and an elementary particle which
is particularly meaningful in the context of a Planck oscillator underpinning.
This can be expressed by,

h, m, N, n, T, N̄ → h′,m′, N ′, n′, 1◦K, N̄ ′

where, as we saw in Chapter 6, h′ ∼ 10−12h, N ′, the number of neutrinos
∼ 1090,m′, the neutrino mass is 10−10m, T is the Hagedorn temperature and
1◦K is the corresponding temperature for the neutrino which is the Cosmic
Background temperature (and which lead to the Fermi temperature consider-
ations in Chapter 6 (cf. equation (6.88) n′ ∼ 1060 is the number of underlying
Planck oscillators for a neutrino and N̄ ′ ∼ 10125 is the number of Planck os-
cillators providing the underpinning for all the neutrinos.
Further, the considerations in Section 5 of Chapter 6 showed that gravitation
and electromagnetism could be thought to be different due to the different
“rates” at which these interactions played themselves out. This can be ex-
tended to the weak interactions also. The rates are different because of the
difference in the number of subconstituents.
4. We have seen above how from the background Zero Point Field Planck
scale oscillators can “condense”. Let us suppose that n such particles are
formed. We can then use the well known fact that [75] for a collection of ul-
tra relativistic particles, in this case the Planck oscillators, the various centres
of mass form a two dimensional disk of radius l given by

l ≈ β

mec
(8.45)

where in (8.45) me(≈ m in the Large Number sense) is the electron mass
and β is the angular momentum of the system. Further l is such that for
distances r < l, we encounter negative energies (exactly as for the Compton
length). It will at once be apparent that for an electron, for which β = h̄̄

2 ,
(8.45) gives the Compton wavelength. We can further characterize (8.45) as
follows: By the definition of the angular momentum of the system of Planck
particles moving with relativistic speeds, we have

h̄̄

2
= mP c

∫ l

0

∫∫
r2drdΘ ∼ mP cσl3 = mecl (8.46)

In (8.46) we have used the fact that the disk of mass centres is two dimen-
sional, and σ has been inserted to stress the fact that we are dealing with a
two dimensional density, so that σ while being unity has the dimension
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The right side of (8.46) gives the angular momentum for the electron. From
(8.46) we get

σl2mP = me (8.47)

which ofcourse is correct.
Alternatively from (8.47) we can recover n ∼ 1040, in the Large Number
sense.
5. In Chapter 5 we argued that, based on the small scale structure of space-
time, it is possible to effect a reconciliation of electromagnetism and grav-
itation. The argument was based on the effects of a minimum spacetime
interval and the resulting noncommutative geometry. In Chapter 6 we could
see a reconciliation of both these interactions, based on the fluctuation in
particle number. In Chapter 7 we saw how taking the minimum spacetime
intervals (or the noncommutative geometry) into account, it is possible to
even have an extended gauge treatment of gravitation. Then in this Chapter
we have shown that gravitation can infact be considered to be a distributional
effect at the scale of the Universe rather than a fundamental interaction. Even
electromagnetism can be thought of as such an effect though at the scale of
elementary particles. Undoubtedly, it is the underpinning of Planck oscilla-
tors that is fundamental. How can we reconcile the large scale “fluctuational”
view with the Quantum view?
We first observe that it is not surprising that Quantum Theory itself should
be the result of fluctuations in the Universe as a whole. In fact as pointed out
[234] the fluctuation in the mass of a typical elementary particle, for example
the pion, due to the fluctuation ∼ √

N of the particle number N ∼ 1080 is
given by

∆m ≈ G
√

Nm2

c2R

Whence

(∆mc2)T =
G
√

Nm2

R
T =

G
√

Nm2

c
≈ h̄̄ (8.48)

where T is the age of the Universe and R its radius, which equals cT .
The right side of (8.48) gives the reduced Planck constant h̄̄̄, in the order
of magnitude sense in which (8.48) itself is an expression of the uncertainty
relation

∆E∆t ≈ h̄̄

Equation (8.48) again suggests the origin of the Quantum Theory in cosmic
fluctuations. However, it is just a restatement of (8.14) or (8.16).
Recently in the above context, Inaba [302] has considered a simple model in
the Robertson-Walker geometry and argued that a fluctuation in this case
yields a random motion which reduces to the usual Quantum Theory.
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He deduces for a nearly flat Robertson-Walker Universe from a minimum av-
erage curvature principle, the Hamilton-Jacobi equation for a single particle.

∂S +
1

2m
gıj(∇S) + V − αR = 0, (8.49)

where the curvature R is given by

R = R(b) + R′; R(b) = 6
(

ȧ

a
+

ä2

a2

)
,

R′ being the fluctuation effect and R(b) being the curvature in the standard
Robertson-Walker geometry.
Equation (8.49) leads by the standard Madelung- Bohm or Nelson theory to
the Schrödinger equation¨

ıh∂¯̄ ı∂∂ ψ =
h̄̄2

2m
∆ψ + V ψ − h̄̄2

4m
R(b) (8.50)

Inaba then argues that (8.50) is indeed the Quantum Mechanical equation
in the classical Robertson-Walker geometry- it is the perturbation R′ in the
Robertson-Walker geometry that leads to (8.50).
We can reexamine the above conclusion as follows: We first observe that in
the random motion of N particles over an extent R, l the fluctuation in the
length is given by

l ≈ R√
N

(8.51)

What is very interesting is that using for R the actual radius of the Universe
∼ 1028cm, and for N the actual number of particles in the Universe, (8.51)
reduces to the well-known and oft encountered Eddington formula.
Further the diffusion equation describing the motion of a particle with posi-
tion given by x(t) subject to random corrections is given by the well-known
equation

|∆x| =
√

< ∆x2 > ≈ ν
√

∆t

where the diffusion constant ν is related to the mean free path l and the
mean velocity v

ν ≈ lv (8.52)

Identifying l of (8.52) with that in (8.51), we, as in the case of Nelson’s
derivation, arrive at the Hamilton-Jacobi equation (8.49) and thence the
Schrodinger equation (8.50) [24, 275, 303, 176, 304]. Incidentally, this also¨
provides a rationale to the otherwise adhoc identification in Nelsonian the-
ory viz.,

v = h/m¯̄

Thus using the equations of Brownian motion in the context of all the par-
ticles in the Universe, we arrive at the same equations (8.49) and (8.50) of
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Inaba based on a minimum curvature principle and Santamato’s geometric
Quantum Mechanics which we saw in the previous Chapter.
In fact one can look upon the above results in terms of the fluctuation of
the metric itself. In Santamato’s original formulation [288, 289, 290, 291],
the geometry is Weyl’s gauge invariant geometry, where there is no invariant
length and in fact we have

δl2 ∼ l2δgık (8.53)

It must be stressed that (8.53) is valid for arbitrary vectors, in which case l
would be their length.
Using the usual geometrodynamic formula for the fluctuation of the metric
[46], we have

l2δgık ≈ ∆gık ≈ lP
l

, (8.54)

where lP is the Planck length.
Whence we get

δgık ∼ 1 (8.55)

if l is of the order 10−11cm or the electron Compton wavelength a result we
encountered earlier.
Similarly using (8.51) in (8.53), we recover (8.55), as in the Weyl geometry.
On the other hand, we have already seen in Chapter 6 that the fluctuation
∼ √

N can itself be deduced from the point of view of the energy levels in the
Universe, considered as a collection of Planck oscillators. All this establishes
the equivalence of the two approaches and reconfirms the Machian feature,
from a more general viewpoint.
Finally it may be remarked that Feynman himself observed a long time ago
that gravitation must be the result of a fluctuation in the metric [299].



9 THE ELUSIVE MASS SPECTRUM

“How can reality be predicated of that which is subject to change, and
reassumes no more its original character? Earth is fabricated into a jar ;

the jar is divided into two halves ; the halves are broken to pieces; the pieces
become dust ; the dust becomes atoms.”

Vishnu Purana

One of the problems that has eluded a solution is that of a mass spectrum
for elementary particles. In other words, why should there be such a plethora
of particles, and why should they have such and such masses? Is there any
formula, based on dynamics, which would generate all these known masses?
Such a formula would be intimately tied up with inter quark interactions.
We will now use the QCD potential to deduce such a formula, which as will
be seen, surprisingly covers all known elementary particles. The well known
QCD potential as we saw is given by [68, 24]

U(r) = −α

r
+ βr (9.1)

where in units h̄̄̄ = c = 1, α ∼ 1. The first term in (9.1) represents the
Coulombic part while the second term represents the confining part of the
potential.

Let us consider the pion made up of two quarks along with a third quark,
one at the centre and two at the ends of an interval of the order of the
Compton wavelength, r. Then the central particle experiences the force

α

(x
2 + r)2

− α

(x
2 − r)2

≈ −2αx

r3
(9.2)

where x is the small displacement from the mean position. Equation (9.2)
gives rise to the Harmonic oscillator potential, and the whole configuration
resembles the tri-atomic molecule. This is pleasingly similar to the oscillator
scenario we encountered in Chapters 5 and 8 wherein the pions themselves
were made up of Planck scale oscillators.
Before proceeding we can make a quick check on (9.2). We use the fact that
the frequency is given by

145
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ω =
(

α2

mπr3

) 1
2

=
α

(mπr3)
1
2

whence the mass of the pion mπ is given by

(hω ≡)ω = mπ (9.3)

Remembering that r = 1/mπ, use of (9.3) gives α = 1, which ofcourse is
correct.
To proceed the energy levels of the Harmonic oscillator are now given by,(

n +
1
2

)
mπ,

or if there are small m such oscillators, we have

E = mP = m

(
n +

1
2

)
mπ (9.4)

where mP is the mass of the corresponding elementary particle. The formula
(9.4) gives the mass of all known elementary particles with an error of less
than one percent for sixty three percent of the particles, less than two percent
for ninety three percent of the particles, and less than three percent for all
particles with the lone exception of ω(782), in which case the error is 3.6%.
The known elementary particles for which the formula (9.4) is valid include
the recently discovered Ds(2317) and the 1.5GeV Pentaquark, discovered af-
ter the above formula was deduced.

Remarks

Firstly it is surprising that there is such a good fit for all the particles [281]
considering that only bare details of the interaction have been taken into
consideration. Once other details are included, the agreement could be even
better. Secondly, it may be mentioned that a similar approach, but using
the proton as the base particle had lead to interesting, but not such com-
prehensive results [70, 82, 305, 242]. Furthermore, instead of starting with
quarks in (9.1) or (9.2), we could have very well started with electrons and
positrons. Indeed, this would be in the spirit of Chapter 1 namely that quarks
are electrons at a smaller scale.
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Table 9.1. Baryons

Particle and Mass Mass from Formula Error % (m, n)

p(938) 959 −2.23881, (2, 3)
n(939) 959 −2.12993, (2, 3)

P11PP ∗ ∗ ∗ ∗N(1440) 1438.5 (0.138889, )0 (1, 10)
D13 ∗ ∗ ∗ ∗N(1520) 1507 (0.855263, ) (2, 5)
S11 ∗ ∗ ∗ ∗N(1535) 1507 1.9442 (2, 5)
S11 ∗ ∗ ∗ ∗N(1650) 1644 (0.363636, )0 (8, 1)
D15 ∗ ∗ ∗ ∗N(1675) 1644 1.85075, (8, 1)
F15FF ∗ ∗ ∗ ∗N(1680) 1644 2.14286, (8, 1)
D13 ∗ ∗ ∗ N(1700) 1712.5 (−0.705882, )0 (1, 12)
P11PP ∗ ∗ ∗ N(1710) 1712.5 (−0.116959, )0 (1, 12)
P13PP ∗ ∗ ∗ ∗N(1720) 1712.5 (0.465116, )0 (1, 12)
P13PP ∗ ∗ ∗ ∗N(1900) 1918 −0.947368, (4, 3)

F17FF ∗ ∗N(1990) 1986.5 0.201005, (1, 14)
F − 15 ∗ ∗N(2000) 1986.5 0.7, (1, 14)

D13 ∗ ∗N(2080) 2055 1.20192, (2, 7)
S11 ∗ N(2090) 2123.5 −1.57895, (1, 15)
P11PP ∗ N(2100) 2123.5 (−1.09524, ) (1, 15)

G17 ∗ ∗ ∗ ∗N(2190) 2123.5 (3.05936, )0 (1, 15)
D15 ∗ ∗N(2200) 2260.5 −2.72727, (3, 5)

H19 ∗ ∗ ∗ ∗N(2220) 2260.5 (−1.8018, )0 (3, 5)
G19 ∗ ∗ ∗ ∗N(2250) 2260.5 (−0.444444, )0 (3, 5)
I1;11 ∗ ∗ ∗ N(2600) 2603 (−0.115385, )0 (2, 9)
K1;13 ∗ ∗N(2700) 2671.5 1.05556 (1, 19)
P33PP ∗ ∗ ∗ ∗∆(1232) 1233 (−0.0811688, )0 (2, 4)
P33PP ∗ ∗ ∗ ∆(1600) 1575.5 (1.5625, )0 (1, 11)
S31 ∗ ∗ ∗ ∗∆(1620) 1644 (−1.46148, )0 (8, 1)
D33 ∗ ∗ ∗ ∗∆(1700) 1712 (−0.705882, )0 (1, 12)

P31 ∗ ∆(1750) 1781 −1.77143, (2, 6)
S31 ∗ ∗∆(1900) 1918 −0.947368, (4, 3)

F35 ∗ ∗ ∗ ∗∆(1905) 1918 (−0.682415, )0 (4, 3)
P31 ∗ ∗ ∗ ∗∆(1910) 1918 (−0.418848, )0 (4, 3)
P33 ∗ ∗ ∗ ∆(1920) 1918 (0.104167, )0 (4, 3)
D35 ∗ ∗ ∗ ∆(1930) 1918 (0.621762, )0 (4, 3)

D33 ∗ ∆(1940) 1918 1.13402, (4, 3)
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Particle and Mass Mass from Formula Error % (m, n)

F37 ∗ ∗ ∗ ∗∆(1950) 1918 1.64103, (4, 3)
F35 ∗ ∗∆(2000) 1986 0.7, (1, 14)
S31 ∗ ∆(2150) 2123.5 1.25581, (1, 15)
G37 ∗ ∆(2200) 2260 −2.72727, (1, 16)
H39HH ∗ ∗∆(2300) 2329 −1.26087, (2, 8)
D35 ∗ ∆(2350) 2329 0.893617, (2, 8)
F37FF ∗ ∆(2390) 2397.5 −0.292887, (1, 17)
G39 ∗ ∗∆(2400) 2397.5 0.125, (1, 17)

H3;11HH ∗ ∗ ∗ ∗∆(2420) 2397.5 (0.950413, )0 (1, 17)
I3;13II ∗ ∗∆(2750) 2740 0.363636, (8, 2)
K3;15 ∗ ∗∆(2950) 2945.5 0.152542, (1, 21)

Λ(1115) 1096 1.7000, (16, 0)
P01PP ∗ ∗ ∗ ∗Λ(1600) 1575.5 1.53125, (1, 11)
S01 ∗ ∗ ∗ ∗Λ(1405) 1438.5 −2.3130, (1, 10)
D03 ∗ ∗ ∗ ∗Λ(1520) 1507 0.855263, (2, 5)
P01 ∗ ∗ ∗ Λ(1600) 1575.5 (1.5625, )0 (1, 12)
S01 ∗ ∗ ∗ ∗Λ(1670) 1644 1.55689, (8, 1)
D03 ∗ ∗ ∗ ∗Λ(1690) 1712.5 −1.30178, (1.12)
S01 ∗ ∗ ∗ Λ(1800) 1781 (1, 05556, )0 (2, 6)
P01 ∗ ∗ ∗ Λ(1810) 1781 (1.60221, )0 (2, 6)

Λ(1820) 1849.5 (2.14286, ) (1, 13)
D05 ∗ ∗ ∗ ∗Λ(1830) 1849.5 −1.03825, (1, 13)
P03 ∗ ∗ ∗ ∗Λ(1890) 1918 −1.48148, (4, 3)

∗Λ(2000) 1986.5 0.7, (1, 14)
F07 ∗ Λ(2020) 2055 −1.73267, (2, 7)

G07 ∗ ∗ ∗ ∗Λ(2100) 2123.5 −1.09524, (1, 15)
F05 ∗ ∗ ∗ Λ(2110) 2123.5 (−0.616114, )0 (1, 15)

D03 ∗ Λ(2325) 2329 −0.172043, (2, 8)
H09 ∗ ∗ ∗ Λ(2350) 2329 0.893617, (2, 8)

∗ ∗ Λ(2585) 2603 0.309478, (2, 9)
P11 ∗ ∗ ∗ ∗Σ + (118) 1164.5 2.10261, (1, 8)
P11 ∗ ∗ ∗ ∗Σ0(119) 1164.5 2.34899, (1, 8)
∗ ∗ ∗ ∗ Σ − (119) 1164.5 2.75689, (1, 8)

P13 ∗ ∗ ∗ ∗Σ(1385) 1370 (0.108), (4, 2)
∗Σ(1480) 1438.5 2.83784, (1, 10)
∗ ∗ Σ(1560) 1575.5 −0.961538, (1, 11)
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Particle and Mass Mass from Formula Error % (m, n)

D13 ∗ ∗Σ(1580) 1575.5 0.316456, (1, 11)
S11 ∗ ∗Σ(1620) 1644 −1.48148, (8, 1)

P11 ∗ ∗ ∗ Σ(1660) 1644 (0.963855, )0 (8, 1)
D13 ∗ ∗ ∗ ∗Σ(1670) 1644 1.55689, (8, 1)

∗ ∗ Σ(1690) 1712.5 −1.30178, (1, 12)
S11 ∗ ∗ ∗ Σ(1750) 1781 (−1.77143, )0 (2, 6)

P11 ∗ Σ(1770) 1781 −0.621469, (2, 6)
D15 ∗ ∗ ∗ ∗Σ(1775) 1781 (−0.338028, )0 (2, 6)

P13 ∗ Σ(1840) 1849.5 −0.48913, (1, 13)
P11 ∗ ∗Σ(1880) 1849.5 1.64894, (1, 13)

F15 ∗ ∗ ∗ ∗Σ(1915) 1918 (−0.156658, )0 (4, 3)
D13 ∗ ∗ ∗ Σ(1940) 1918 (1.13402, )0 (4, 3)

S11 ∗ Σ(2000) 1986.5 0.7, (1, 14)
F17 ∗ ∗ ∗ ∗Σ(2030) 2055 −1.23153, (2, 7)

F15 ∗ Σ(2070) 2055 0.724638, (2, 7)
P13 ∗ ∗Σ(2080) 2055 1.20192, (2, 7)
G17 ∗ Σ(2100) 2123 −1.09524, (1, 15)
∗ ∗ ∗Σ(2250) 2260 (−0.444444, )0 (3, 5)
∗ ∗ Σ(2455) 2466 −0.448065, (4, 4)
∗ ∗ Σ(2620) 2603 0.648855, (2, 9)
∗Σ(3000) 3014 −0.466667, (4, 5)
∗Σ(3170) 3151 0.599369, (2, 11)

P11 ∗ ∗ ∗ ∗Ξ0, Ξ − (13) 1301.5 1.01156, (1, 9)
∗ ∗ ∗ ∗ Ξ(1321) 1301.5 1.47615, (1, 9)

P13 ∗ ∗ ∗ ∗Ξ(1530) 1507 1.50327, (2, 5)
∗Ξ(1620) 1644 −1.48148, (8, 1)

∗ ∗ ∗Ξ(1690) 1712.5 −1.30178, (1, 12)
D13 ∗ ∗ ∗ Ξ(1820) 1849.5 −1.59341, (1, 13)

∗ ∗ ∗Ξ(1950) 1918 1.64103, (4, 3)
∗ ∗ ∗Ξ(2030) 2055 −1.23153, (2, 7)
∗Ξ(2120) 2123.5 −0.141509, (1, 15)
∗ ∗ Ξ(2250) 2260.5 −0.444444, (1, 16)
∗ ∗ Ξ(2370) 2397.5 −1.13924, (1, 17)
∗Ξ(2500) 2534.5 −1.36, (1, 18)
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Particle and Mass Mass from Formula Error % (m, n)

∗ ∗ ∗ ∗ Ω − (1672) 1644 1.67464, (8, 1)
∗ ∗ ∗Ω − (2250) 2260.5 (−0.444444, )0 (1, 16)
∗ ∗ Ω − (2380) 2397.5 −0.714286, (1, 17)
∗ ∗ Ω − (2470) 2466 0.161943, (4, 4)

∗ ∗ ∗ ∗ Λc + 2285) 2260.5 1.09409, (1.16)
+ ∗ ∗ ∗ Λc + (2593) 2603 −0.385654, (2, 9)
+ ∗ ∗ ∗ Λc + (2625) 2603 0.838095, (2, 9)

+ ∗ Λc + (2765) 2740 0.904159, (8, 2)
+ ∗ ∗Λc + (2880) 2877 0.104167, (2, 10)
∗ ∗ ∗ ∗ Σc(2455) 2466 −0.448065, (4, 4)
∗ ∗ ∗Σc(2520) 2534.5 −0.555556, (1, 18)
Ξc + (2466) 2466 0, (4, 4)

∗ ∗ ∗Ξc0(2471) 2466 0.202347, (4, 4)
∗ ∗ ∗Ξc + (2574) 2603 (1.12665, )0 (2, 9)
∗ ∗ ∗Ξc0(2578) 2603 (0.96974, )0 (2, 9)

Ξc(2645) 2671.5 −0.982987, (1, 19)
∗ ∗ ∗Ξc(2790) 2808.5 −0.645161, (1, 20)
∗ ∗ ∗Ξc(2815) 2808.5 0, 248668, (1, 20)
∗ ∗ ∗Ωc0(2697) 2671.5 0.964034, (1, 19)
∗ ∗ ∗Λb0(5624) 5617 (0.124467, )0 (2, 20)
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Table 9.2. Mesons

Particle and mass Mass From Formula Error % (m, n)

∗π±±(139) 137 −1.43885
∗π0(135) 137 1.481481

K± 496 1.9 (1, 3)
∗η(547) 548 0.182815 (8, 0)
∗f0ff (600) 616.5 (2.75)0 (1, 4)
∗ρ(770) 753.5 −2.14286 (1.5)
∗ω(782) 753.5 −3.6445 (1, 5)
∗η′(958) 959 0.104384 (2, 3)
∗f0ff (980) 959 −2.14286 (2, 3)
∗a0(980) 959 −2.14286 (2, 3)
∗φ(1020) 1027.5 0.735294 (1, 7)
∗h1(1170) 1164.5 (−0.47009)0 (1, 8)
∗b1(1235) 1233 (−0.16194)0 (2, 4)
a1(1260) 1233 (−2.14286)0 (2, 4)
f2ff (1270) 1233 −2.91339 (2, 4)
f1(1285) 1301.5 1.284047 (1, 9)
∗η(1295) 1301.5 0.501931 (1, 9)
π(1300) 1301.5 0.115385 (1, 9)
a2(1320) 1301.5 −1.40152 (1, 9)
∗f0ff (1370) 1370 0 (4, 2)
h1(1380) 1370 0.72464 (4, 2)
π1(1400) 1370 −2.14286 (4, 2)
f1(1420) 1438.5 1.302817 (1, 10)
∗ω(1420) 1438.5 (1.302817)0 (1, 10)
f2ff (1430) 1438.5 0.594406 (1, 10)
∗η(1440) 1438.5 −0.10417 (1, 10)
∗a0(1450) 1438.5 −0.7931 (1, 10)
∗ρ(1450) 1438.5 −0.7931 (1, 10)
∗f0ff (1500) 1507 (0.466667)0 (2, 5)
f1(1510) 1507 −0.19868 (2, 5)
∗f ′

2ff (1525) 1507 −1.18033 (2, 5)
f2ff (1565) 1575.5 0.670927 (1, 11)
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Particle and mass Mass From Formula Error % (m, n)

h1(1595) 1575.5 −1.22257 (1, 11)
π1(1600) 1575.5 −1.53125 (1, 11)
χ(1600) 1575.5 −1.53125 (1, 11)
a1(1640) 1644 0.243902 (8, 1)
f2ff (1640) 1644 0.243902 (8, 1)
η2(1645) 1644 (0.06079)0 (8, 1)
ω(1670) 1644 (1.55688)0 (8, 1)
∗ω3(1670) 1644 −1.55689 (8, 1)
∗π2(1670) 1644 −1.55689 (8, 1)
∗φ(1680) 1712.5 1.934524 (1, 12)
∗ρ3(1690) 1712.5 1.331361 (1, 12)
∗ρ(1700) 1712.5 (0.735294)0 (1, 12)
a2(1700) 1712.5 0.735294 (1, 12)
f0ff (1710) 1712.5 (0.146199)0 (1, 12)
η(1760) 1781 1.193182 (2, 6)
∗π(1800) 1781 −1.05556 (2, 6)
f2ff (1810) 1781 −1.60221 (2, 6)
∗φ3(1850) 1849.5 (−0.02703)0 (1, 13)
η2(1870) 1849.5 −1.09626 (1, 13)
ρ(1900) 1918 0.947368 (4, 3)
f2ff (1910) 1918 0.418848 (4, 3)
f2ff (1950) 1918 −1.64103 (4, 3)
ρ3(1990) 1986.5 −0.17588 (1, 14)
X(2000) 1986.5 −0.675 (1, 14)
f2ff (2010) 1986.5 (−1.16915)0 (1, 14)
f0ff (2020) 1986.5 1.65842 (1, 14)
∗a4(2040) 2055 0.735294 (2, 7)
f4ff (2050) 2055 0.243902 (2, 7)
π2(2100) 2123.5 1.119048 (1, 15)
f0ff (2100) 2123.5 1.119048 (1, 15)
f2ff (2150) 2123.5 −1.23256 (1, 15)
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Particle and mass Mass From Formula Error % (m, n)

ρ2(2150) 2123.5 −1.23256 (1, 15)
f0ff (2200) 2260.5 2.75 (1, 16)
fJ(2220) 2260.5 1.824324 (1, 16)
η(2225) 2360 1.595506 (1, 16)
ρ3(2250) 2260 0.466667 (1, 16)
∗f2ff (2300) 2329 1.26087 (2, 8)
f4ff (2300) 2329 1.26087 (2, 8)
Ds(2317) 2329 0.5 (2, 8)
f0ff (2330) 2329 −0.04292 (2, 8)
∗f2ff (2340) 2329 −0.47009 (2, 8)
ρ5(2350) 2329 −0.89362 (2, 8)
a6(2450) 2466 −0.89362 (4, 4)
f6ff (2510) 2534.5 0.976096 (1, 18)
∗K∗(892) 890.5 −0.16816 (1, 6)
∗K1(1270) 1233 2.91338 (2, 4)
∗K1(1400) 1370 −2.14286 (4, 2)
∗K∗(1410) 1438.5 2.021277 (1, 10)
∗K∗

0 (1430) 1438.5 0.594406 (1, 10)
∗K∗

2 (1430) 1438.5 0.594406 (1, 10)
K(1460) 1438.5 −1.4726 (1, 10)

Pentaquark(1.5GeV ) 1.5 0 (2, 5)
K2(1580) 1575.5 −0.28481 (1, 11)
K(1630) 1644 0.858896 (8, 1)
K1(1650) 1644 −0.36364 (8, 1)
∗K∗(1680) 1712.5 (1.934524)0 (1, 12)
∗K2(1770) 1781 (0.621469)0 (2, 6)
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Particle and mass Mass From Formula Error % (m, n)

∗K∗
3 (1780) 1781 (0.05618)0 (2, 6)

∗K2(1820) 1849.5 1.620879 (1, 13)
K(1830) 1849.5 1.065574 (1, 13)
K∗

0 (1950) 1918 −1.64103 (4, 2)
K∗

2 (1980) 1986.5 0.328283 (1, 14)
∗K∗

4K (2045) 2055 (0.488998)0 (2, 7)
K2(2250) 2260.5 0.466667 (1, 16)
K3(2320) 2329 0.387931 (2, 8)
K∗

5 (2380) 2397.5 0.735294 (1, 17)
K4KK (2500) 2466 −1.36 (4, 4)
K(3100) 3082.5 −0.56452 (1, 22)

∗D±(1869.3) 1849.5 −1.05922 (1, 13)
∗D±

0 (1968.5) 1986.5 0.914402 (1, 14)
∗D∗

0(2007) 1986.5 −1.02143 (1, 14)
D∗

±(2010) 1986.5 −1.16915 (1, 14)
DS(2317) 2329 0.51791 (2, 8)
∗D1(2420) 2397.5 −0.92975 (1, 17)
D±

1 (2420) 2397.5 −0.97067 (1, 17)
D∗

2(2460) 2466 0.243902 (4, 4)
D∗

±(2460) 2466 0.243902 (4, 4)
D±

S1(2536) 2534.5 −0.07885 (1, 18)
DSJ(2573) 2534.5 −1.49631 (1, 18)
∗B±(5278) 5274.5 −0.08524 (1, 38)
∗B0(5279.4) 5274.5 −0.09281 (1, 38)

Bj(5732) 5754 −0.47009 (4, 10)
∗B0

S(5369.6) 5343 −0.49538 (2, 19)
B∗

SJ(5850) 5822.5 −0.47009 (1, 42)
∗B±

c (6400) 6370.5 0.4609 (3, 15)
∗ηc(1S)(2979) 2945.5 −1.12454 (1, 21)

∗J/ψ(1S)(30968) 3082.5 −0.46402 (1, 22)
∗χc0(1P )(3415.1) 3425 0.289889 (2, 12)
∗χc1(1P )(3510.5) 3493.5 −0.48426 (1, 25)
∗χc2(1P )(3556) 3562 0.168729 (4, 6)
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Particle and mass Mass From Formula Error % (m, n)

∗ψ(2S)(3685.9) 3699 0.355408 (2, 13)
∗ψ(3770) 3767.5 (−0.06631)0 (1, 27)
∗ψ(3836) 3836 0 (8, 3)
∗ψ(4040) 4041.5 (0.037129)0 (1, 29)
∗ψ(4160) 4178.5 (0.444712)0 (1, 30)
∗ψ(4415) 4452.5 0.84937 (1, 32)

∗γ(1S)(9460.3) 9453 −0.07716 (2, 34)
χb0(1P )(9859.9) 9864 0.041583 (16, 4)
∗χb1(1P )(9892.7) 9864 −0.29011 (16, 4)
∗χb2(1P )(9912.6) 9864 −0.49029 (16, 4)
∗γ(2S)(10023) 10001 0.21949 (2, 36)

∗χb0(2P )(10232) 10275 0.42026 (2, 37)
∗χb1(2P )(10255) 10275 0.1945027 (2, 37)
∗χb2(2P )(10268) 10275 0.068173 (2, 37)
∗γ(3S)(10355) 10343.5 0.11105 (1, 75)
∗γ(4S)(10580) 10549 −0.29301 (2, 38)
∗γ(10860) 10891.5 0.290055 (3, 26)
∗γ(11020) 11028.5 0.077132 (1, 80)



10 EXPERIMENTAL EFFECTS

“I want to know how God created this world. I am not interested in this or
that phenomenon, in the spectrum of this or that element. I want to know

His thoughts, the rest are details.”

A. Einstein

10.1 Introduction

We will now consider the experimental consequences of fuzzy spacetime con-
siderations we encountered, particularly in Chapters 5 and 6. Indeed the
paradigmatic shift to an accelerating Universe is already a major confirma-
tion of the theory developed in Chapter 6. Let us consider some other effects.
We start with the possible correction to Einstein’s formula, which we en-
countered earlier in Chapter 6. Recent observations of Ultra High Energy
Cosmic Rays suggest that there could be a small violation of Lorentz sym-
metry at energies ∼ 1020eV , as we will see below. This is because there is
the so called Lorentz compatible GZK cut off, beyond which there should
not be any particles reaching the earth from cosmological distances. This has
prompted several authors including Glashow and Coleman, Mestres, Jacob-
son and others in recent years to speculate on the form of Lorentz violation.
Actually as pointed out by ’t Hooft, the author himself and others, a high
energy violation of Lorentz symmetry is expected in schemes where space-
time is discrete. Such schemes as we saw in Chapter 5 have been studied for
a long time - from the work of Snyder, Finkelstein, Kardyshevskii, Wolf, the
author himself and others [114, 115, 121, 24, 116, 150]. This is encountered in
Lattice Gauge Theory too [252], though more as a computational tool. More
recently, ’t Hooft and others have re-examined lattice theories. This time the
motivation has been more on the lines of minimum spacetime intervals [22].
What happens in this case is there is a departure from Lorentz symmetry[24,
307]. Typically we have an energy momentum relation (with units such that
c = 1 = h̄̄)

E2 = m2 + p2 − l2p4 (10.1)

where l is a minimum length interval, which could be typically the Planck
length and more generally the Compton length, (which reduces to the Planck

157
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length for a Planck mass). Interestingly we could arrive at (10.1) from an
alternative point of view, starting directly from the noncommutativity of
spacetime, or the Modified Uncertainty Principle which results from these
considerations as we saw in Chapters 5 and 6 (Cf. also [145]):

[x, p] = h̄̄̄′ = h̄̄[1 +
(

l

h̄̄

)2

p2] etc (10.2)

where we have temporarily re-introduced h̄̄̄. (10.2) shows that effectively h̄̄̄ is
replaced by h̄̄̄′. So,

E = (m2 + p2)
1
2 (1 + l2p2)−1

or
E2 = m2 + p2 − 2l2p2, (10.3)

neglecting higher order terms. (10.3) is of the same form as (10.1). We now
examine a few implications of (10.1).

10.2 Modified Dispersion

Let us consider an effect similar to the Compton effect [276], but with (10.1)
replacing the usual energy momentum formula. Here if k0 is the incident
radiation and k is the scattered radiation at an angle Θ, as in the usual
theory we get from the energy and momentum conservation laws,

k0 − k = E − m (10.4)

and
k0 − k = p (10.5)

Further algebraic manipulation of (10.4) and (10.5) gives

kk0(1 − cosΘ) = m(k0 − k) +
l2

2
[Q2 + 2mQ]2 = mQ +

l2

2
[Q2 + 2mQ]2

where
E − m = Q = k0 − k

Whence, we get the frequency k as, (in natural units),

k =
mk0 + l2

2 [Q2 + 2mQ]2

[m + k0(1 − cosΘ)]
(10.6)

Alternatively, let us denote the additional change in frequency due to the non-
commutativity of spacetime or the presence of minimum spacetime intervals
by ε, so that

k + ε = k̄
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k̄ being the usual compton frequency. With this, we get, instead of (10.6),

ε =
l2[Q2 + 2mQ]2

2{m + k0(1 − cosΘ)} (10.7)

The relations (10.6) or (10.7) enable us to observe the effect of the violation
of Lorentz symmetry as embodied in (10.1).
It must be reiterated that in the usual formulation there is a restriction on the
energy of the cosmic rays which we receive due to the presence of the GZK
cut off (Cf.refs.[308] to [311]): The Microwave Cosmic Background Radiation
limits the propagation of Ultra High Energy Cosmic Rays due to inelastic
collisions with the background photons. Particles with energy greater than a
few1019eV cannot propagate further than about 50Mpc. On the other hand
the very small departure from Lorentz symmetry as in (10.6) or (10.7) would
lead to significant effects at higher and higher energies and could explain
the observed Ultra High Energy Cosmic Ray events of energy greater than
1020eV .

10.3 Particle Behaviour

Owing to (10.1) we have a modified Klein-Gordan equation

(D + l2∇4 − m2)ψ = 0 (10.8)

where D denotes the usual D’Alembertian.
Just to get a feel, it would be interesting to consider the extra effect in (10.8).
For simplicity we take the one dimensional case. As in conventional theory if
we separate the space and time parts of the wave function we get

l2u(4) + u(2) + λu = 0, λ = E2 − m2 > 0 (10.9)

where u(n) denotes the nth space derivative.
Whence if in (10.9) we take,

u = eαx

and α2 = β we get,
l2β2 + β + λ = 0

whence

β =
−1 ±√

1 − 4l2λ

2l2

So

β ≈ −1 ± {1 − 2l2λ}
2l2

(10.10)

From (10.10) it is easy to deduce that there are two extra solutions, as can
be anticipated by the fact that (10.8) is a fourth order equation, unlike the
usual second order Klein-Gordan equation. Thus we have
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β = −λ(< 0)

giving the usual solutions, but additionally we have

β = −
(

1 − λl2

l2

)
(< 0) (10.11)

What do the two extra solutions in (10.11) indicate? To see this we observe
that α is given by, from (10.11)

|α| ≈ ±1
l

(10.12)

In other words (10.12) corresponds to waves with wavelength of the order l,
which is intuitively quite reasonable.
What is interesting is that if l is an absolute length then the extra effect
is independent of the mass of the particle. In any case the solutions from
(10.12) are GZK violating solutions, arising as they do, from the modified
energy momentum formula (10.1).
We now make some remarks. Departures from Lorentz symmetry of the type
given in (10.1) have as noted, been studied, though from a phenomenological
point of view [308, 309, 310, 311, 312, 313]. These arise mostly from an
observation of Ultra High Energy Cosmic Rays. Given Lorentz Symmetry,
there is the GZK cut off already alluded to, such that particles above this cut
off would not be able to travel cosmological distances and reach the earth.
However as mentioned, there are indications of a violation of the GZK cut
off (Cf.references [308]-[313]).
In any case some of the effects following, for example from (10.1), like (10.6)
or (10.7) can be detected, it is hoped by the GLAST Satellite to be launched
by NASA in 2006 or shortly thereafter [314].
Interestingly, if in (10.1) or (10.8) we take, purely on an ad hoc basis, −l2

rather than +l2, we get two real exponential solution of (10.8). One of them is
an increasing exponential leading to very high probabilities for finding these
particles.

10.4 A New Short Range Force

As we saw in Chapter 5, in some ways the General Relativistic gravitational
field resembles the electromagnetic field, particularly in certain approxima-
tions, as for example when the field is stationary or nearly so and the velocities
are small. In this case the equations of General Relativity can be put into
a form resembling those of Maxwell’s Theory, and then the fields have been
called Gravitoelectric and Gravitomagnetic [315]. Experiments have also been
suggested for measuring the Gravitomagnetic force components for the earth
[316].
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We can ask whether such a consideration can be applied to elementary parti-
cles, if in fact they can be considered in the context of General Relativity. As
already mentioned in Chapters 1 and 4, apart from Quantum Gravity, there
have been different approaches for studying elementary particles via General
Relativity [317, 24, 113] and references therein. We will now show that it is
possible to extend the Gravitomagnetic and Gravitoelectric formulations to
elementary particles within the framework of the theory developed in [24].
We saw that the linearized General Relativistic equations could describe the
properties of elementary particles, such as spin, mass, charge and even the
very Quantum Mechanical anomalous gyromagnetic ratio g = 2, apart from
several other characteristics [161, 318, 168, 82].
We merely report that the linearized equations of General Relativity, viz.,

gµν = ηµν + hµν , hµν =
∫

4TµνTT (t − |x − x′|,x′)
|x − x′| d3x′ (10.13)

where as usual,
Tµν = ρuuuv (10.14)

lead, on using (10.14) in (10.13), to the mass, spin, gravitational potential
and charge of an electron, if we work at the Compton scale (Cf. Chapters
1, 5 and ref.[24] for details). Let us now apply the macro Gravitoelectric
and Gravitomagnetic equations to the above case. Infact these equations are
(Cf.ref.[315]).

∇ · Eg ≈ −4πρ,∇× Eg ≈ −∂Hg/∂t, etc. (10.15)

Eg = −∇φ − ∂A/∂t, Hg = ∇× A (10.16)

φ ≈ −1
2
(g00 + 1),Aı ≈ g0ı, (10.17)

The subscripts g in the equations (10.15) and (10.16) are to indicate that the
fields E and H in the macro case do not really represent the electromagnetic
field, but rather resemble them. Let us apply equation (10.16) to equation
(10.13), keeping in mind equation (10.17). We then get, considering only the
order of magnitude, which is what interests us here, after some manipulation

|H| ≈
∫

ρV

r2
r̄ ≈ mV

r2
(10.18)

and

|E| =
mV 2

r2
(10.19)

V being the speed.
In (10.18) and (10.19) the distance r is much greater than a typical Compton
wavelength, to make the approximations considered in deriving the Gravito-
magnetic and Gravitoelectric equations meaningful.
Remembering that we have, by the Uncertainty Principle,
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mV r ≈ h,

the electric and magnetic fields in (10.18) and (10.19) now become

|H| ∼ h

r3
, |E| ∼ hV

r3
(10.20)

We now observe that (10.20) does not really contain the mass of the elemen-
tary particle. Could we get a further insight into this new force?
Indeed in the above linearized General Relativistic characterization of the
electron, it turns out as indicated that the electron can be represented by the
Kerr-Newman metric which incidentally also gives the anomalous gyromag-
netic ratio g = 2. (This result has recently been reconfirmed by Nottale [319]
from a totally different point of view, using scaled relativity). It is well known
that the Kerr-Newman field has extra electric and magnetic terms (Cf.[62]),
both of the order 1

r3 , exactly as indicated in (10.20).
It may be asked if there is any candidate as yet for the above mass inde-
pendent, spin dependent (through h) short range force. There is already one
such experimental candidate - the inexplicable B(3) [320] short range force,
first detected in 1992 at Cornell and since it is claimed, confirmed by subse-
quent experiments. It differs from the usual B(1) and B(2) long range fields
of Special Relativity.
Interestingly, if we think of the above force as being mediated by a “massive”
particle, that is, work with a massive vector field we can recover (10.19) and
(10.20) [321]. In this case there is an upper limit on the mass of the photon
∼ 10−48g, that is, less than a trillionth the mass of a neutrino.
A final comment: It is quite remarkable that equations like (10.15), (10.16)
and (10.17) which resemble the equations of electromagnetism, have in the
usual macro considerations no connection whatsoever with electromagnetism
except in appearance. This would seem to be a rather miraculous coincidence.
In fact the above considerations of section 2 and linearized General Rela-
tivistic theory of the electron as also the Kerr-Newman metric formulation,
demonstrate that the resemblance to electromagnetism is not an accident,
because in this latter formulation, both electromagnetism and gravitation
arise from the metric (Cf.also refs.[67, 161, 318, 24]).

10.5 Gravitational Effects

We may next point out the following. Let us introduce the minimum cut off
l into the Schwarzchild metric. This gives

dτ2 = dτ2
0ττ − 2MG

r
(
l

r
)(dt2 − dr2)

where dτ2
0ττ is the unmodified metric. The above shows that G is replaced by
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G(1 +
l

r
).

Apart from the fact that this is equivalent to an extra force,

Force ∝ GMl

r3
,

it is also equivalent to the time varying G encountered earlier in Chapter 6
and given by

Ġ = −G/t

The above follows because
r

t
=

l

τ

where r and t are the radius and age of the Universe and l and τ are a typical
Compton length and time. This variation is within the observed limits.
It is interesting to note that in the above analysis, if we take l to be the
radius of the Universe and M to be its mass, then the extra force gives the
observed cosmological constant. (Interestingly, the Universe itself shows up
as a Schwarzchild Black Hole, as shown elsewhere [24]).
Further, apart from known results, the above variation of G with time ex-
plains the otherwise inexplicable anomalous accelerations of the Pioneer
spacecrafts observed over the past several years by J.D. Anderson of JPL,
Pasadena, and co-workers [322, 323, 324].
Infact from the usual orbital equations we have [325]

vv̇ ≈ −GM

2tr
(1 + ecosΘ) − GM

r2
ṙ(1 + ecosΘ)

v being the velocity of the spacecraft. It must be observed that the first term
on the right side is the new effect. There is now an anomalous acceleration
given by

ar = 〈v̇〉anom =
−GM

2trv
(1 + ecosΘ)

≈ −GM

2tλ
(1 + e)3

where
λ = r4Θ̇2

If we insert the values for the Pioneer spacecrafts we get

ar ∼ −10−7cm/sec2

This is the observed as yet unexplained anomalous acceleration even though
Anderson and collaborators have tried several other explanations for over a
decade.
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10.6 Bosons as Bound States of Fermions

In our formulation, Fermions are primary - Bosons are bound states of Fermi-
ons. This has been discussed in detail in (ref. [24]). The question is, does the
photon fit into this scheme? Indeed a long time ago, Darwin showed that
the massless, force free Dirac theory was formally identical to source free
electrodynamics in a vacuum [326]. In the absence of a suitable physical in-
terpretation this mathematical identity has for long been considered to be a
mere mathematical coincidence (Cf.ref.[326]). After all, photons are spin one
particles, while the Dirac equation represents spin half particles. At the same
time, it has also been recognized for a long time - Einstein and Meyer were
one of the first to point this out - that the spinorial representation of the
Lorentz group is more fundamental than the vectorial representation [317].
In the light of the above observations we would now like to point out that
the above circumstance is not a mere coincidence, but has a definite physical
interpretation.
We firstly make some preliminary remarks: Both in electromagnetic theory
and in the Dirac theory, the D’Alembertian equation

Dψµ = 0 (10.21)

where D is the D’Alembertian operator, is satisfied by the respective com-
ponents. This is merely an expression of Lorentz invariance. At this point
the two theories diverge. This is because an equation like (10.21) requires
the value of ψ at say t = 0 and so also the value of ∂ψ

∂t for specifying the
solution. This does not pose any problem in electromagnetic theory, but is
not acceptable in Quantum Theory, because the Quantum Mechanical wave
function ψ contains as complete a description of the state as is possible and
there is no room for derivatives as initial conditions. This is also the reason
why (10.21), or the Quantum Mechanical Klein-Gordan equation gives neg-
ative probability densities. So the order of (10.21) needs to be depressed to
make it a first order equation, which infact is the starting point of the Dirac
theory and leads to the Dirac equation,

(γµpµ − m)ψ = 0 (10.22)

It may be mentioned that two component spinors belonging to the represen-
tation

D( 1
2 0)orD(0 1

2 )

of the Lorentz group are solutions of the Dirac equation (10.22). But these
are no longer invariant under reflections [66]. It is to preserve this invariance
that we have to consider the 4 × 4 representation

D( 1
20) ⊕ D(0 1

2 )

Under reflections, the two spinors transform into each other thus maintaining
the overall invariance [60]. We also note that, as is known [327], the Maxwell
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equations can also be written in the form of neutrino equations. Defining a
four vector such that

χj = Ej + ıBj , χ0 = 0 (10.23)

we can rewrite the Maxwell equations in the form

βµ
∂χν

∂xµ
= −1

c
jν (10.24)

where in a particular representation, for example,

β0 = IXI, β1 = −σ3 ⊗ σ2,

β2 = σ2 ⊗ I, β3 = σ1 ⊗ σ2,

the σ’s being the Pauli matrices and wherein for our source free vacuum case,
the current four vector on the right hand side of equation (10.24) vanishes. It
is easy to show that the four component equation (10.24) breaks down into
two component neutrino like equations, except that both these equations are
coupled owing to the additional condition χ0 = 0 in (10.23). This has been
the problem in identifying (10.24) with the Dirac theory.
In the above context let us now approach the above considerations from the
opposite point of view, that of the Dirac equation. It is well known that the
four linearly independent four spinor Dirac wave functions are given by [29],
apart from multiplicative factors,⎡

⎢⎢⎣
1
0

pzc
E+mc2

p+c
E+mc2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
1

p−c
E+mc2
−pzc

E+mc2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

pzc
E+mc2

p+c
E+mc2

1
0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

p+c
E+mc2
−pzc

E+mc2

0
1

⎤
⎥⎥⎦ (10.25)

where pz is the z component of the momentum and

p± = px ± ıpy,

in a representation given by,

γı = γ0

[
0 σı

σı 0

]
, γ0 =

[
1 0
0 − 1

]

the σ’s being the Pauli matrices.
If we consider the z axis to be in the direction of motion, for simplicity and
take the limit m → 0, the spinors in (10.25) become,

ψ1 =

⎡
⎢⎢⎣

1
0
1
0

⎤
⎥⎥⎦ ψ2 =

⎡
⎢⎢⎣

0
1
0
−1

⎤
⎥⎥⎦ψ3 =

⎡
⎢⎢⎣

1
0
1
0

⎤
⎥⎥⎦ ψ4 =

⎡
⎢⎢⎣

0
−1
0
1

⎤
⎥⎥⎦ (10.26)
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It should be noticed that in (10.26) ψ1 = ψ3, and ψ2 = ψ4 so that effectively,
two of the spinors vanishes exactly and we are using with two solutions as in
the case of the solutions χ of (10.24).(The mass zero four component Dirac
spinor does not represent a neutrino unless an auxiliary condition, which
effectively destroys the lower two or upper two components is imposed [60]).
It can now be seen from the above considerations that the source free vacuum
electromagnetic field can be considered to be a composite of a neutrino and
an anti neutrino. It may be mentioned that the possibility of Bosons being
bound states of Fermions, rather than being primary has been discussed by
the author and other scholars [328, 24].

10.7 Can we Harness the Zero Point Field?

Let us start with the well known Casimir effect, encountered in Chapter
6. The essential idea of the Casimir effect is that the interaction between
the ZPF and matter leads to macroscopic consequences. For example if we
consider two parallel metallic plates in a conducting box, then we should have
a Casimir force given by [213]

F =
−π2

240
hcA¯̄
l4

where A is the area of the plates and l is the distance between them. More
generally, the Casimir force is a result of the boundedness or deviation from
a Euclidean topology of or in the Quantum Vacuum. These Casimir forces
have been experimentally demonstrated [222, 329, 330, 331].
Returning to the ZPF as the ubiquitous dark energy, we observe that [46], a
fluctuating electromagnetic field can be modelled as an infinite collection of
independent Harmonic oscillators as noted in Chapter 6. Quantum Mechani-
cally, the ground state of the Harmonic oscillators is described by, as we saw
in Chapter 6,

ψ(x) =
(mω

πh̄̄

)1/4

e−(mω/2h̄̄)x2

which exhibits the probability for the oscillator to fluctuate, mostly in the
region given by

∆x ∼ (h̄/mω¯̄ )1/2

An infinite collection of such oscillators can be modelled by

ψ(ξ1, ξ2, · · ·) = const. exp[−(ξ2
1 + ξ2

2 + · · ·)],

which gives the probability amplitude for an electromagnetic field configura-
tion B(x, y, z), ξ1, etc. being the Fourier coefficients. Finally, as a consequence
there is a fluctuating magnetic field given by
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B =

√
hc¯̄
l2

(10.27)

where l is the extent over which the fluctuation is measured. Further these
fluctuations typically take place within the time τ , a typical elementary par-
ticle Compton time (Cf.ref.[187]) as seen in Chapter 6. This begs the question
whether such ubiquitous fields could be tapped for terrestrial applications or
otherwise.
We now invoke the well known result from macroscopic physics that the cur-
rent in a coil is given by

ı =
NBA

R∆t
(10.28)

where N is the number of turns of the coil, A is its area and R the resistance.
Introducing (10.27) into (10.28) we deduce that a coil in the ZPF would have
a fluctuating electric current given by

ı ≈ NA

R
· e

l2τ
(10.29)

In principle it should be possible to harness the current (10.29). While this
current is small, if we have a superconductor, then R would be very small
and the current would be much larger. The question is, whether such an
application is possible, on the earth or in an orbiting space craft, for example.

10.8 Retrospect

We have seen in Chapter 6 that a major confirmation for the ideas encoun-
tered in this book has come from the observation of a dark energy driven
accelerating Universe, with a small cosmological constant. Moreover inex-
plicable, empirical “coincidental” relations are deduced from the theory.
Apart from the effects seen in this Chapter, it may also be mentioned that
the mass spectrum formula encountered in Chapter 9, not just gives the
masses of all known elementary particles, but also, the subsequently discov-
ered Ds(2317) and the pentaquark agree with the formula, which infact gives
any number of other particle masses.
It may also be pointed out that the violation of time reversal in the Kaon
decay also has an explanation within the Compton time minimum interval.
This has been discussed in detail (Cf.refs.[24, 332]).
Finally, there is also an Aharonov-Bohm type of an extra effect as de-
scribed in ref.[24]. Briefly, given that an electron can be described by a Kerr-
Newman metric, it can be approximated by a solenoid and we could expect
an Aharonov-Bohm type of effect, due to the vector potential A which would
give rise to shift in the phase in a two slit experiment for example [333]. This
shift is given by

∆δB̂ =
e

h̄̄

∮
A · ds (10.30)
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while the shift due to the electric charge would be

∆δÊ =
e

h̄̄

∮
A0dt (10.31)

where A0 is the electrostatic potential. In the above formulation we would
have

A ∼ 1
c
A0 (10.32)

Substitution of (10.32) in (10.30) and (10.31) shows that the magnetic effect
is ∼ v

c times the electric effect.
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